Chapter 20

Drugs Containing Tannins

20.2 Classification

The tannin compounds can be divided into two major groups on the basis of Goldbeater’s skin test. A group of tannins showing the positive tanning test may be regarded as true tannins, whereas those, which are partly retained by the hide powder and fail to give the test, are called as pseudotannins.
Most of the true tannins are high molecular weight compounds. These compounds are complex polyphenolics, which are produced by polymerization of simple polyphenols. They may form complex glycosides or remains as such which may be observed by their typical hydrolytic reaction with the mineral acids and enzymes. Two major chemical classes of tannins are usually recognized based on this hydrolytic reaction and nature of phenolic nuclei involved in the tannins structure. The first class is referred to as hydrolysable tannins, whereas the other class is termed as condensed tannins.

Nonhydrolysable or Condensed Tannins

Condensed tannins, unlike the previously explained group are not readily hydrolysable to simpler molecules with mineral acids and enzymes, thus they are also referred to as nonhydrolysable tannins. The term proanthocyanidins is sometimes alternatively used for these tannins. The compounds containing condensed tannins contain only phenolic nuclei which are biosynthetically related to flavonoids. Catechin which is found in tannins is flavan-3-o1, whereas leucoanthocyanidins are flavan-3,4-diol structures. These phenolics are frequently linked to carbohydrates or protein molecules to produce more complex tannin compounds. When treated with acids or enzymes, they tend to polymerize yielding insoluble red coloured products known as phlobaphens. The phlobaphens give characteristic red colour to many drugs such as cinchona and wild cherry bark. On dry distillation, they yield catechol derivatives. Condensed tannins are also soluble in water and produces green colour with ferric chloride.
The families of the plants rich in both of the above groups of tannins include Rosaceae, Geraniaceae, Leguminosae, Combretaceae, Rubiaceae, Polygonaceae, Theaceae, etc. The members of families Cruciferae and Papaveraceae on the other hand are totally devoid of tannins. In the plants in which tannins are present, they exert an inhibitory effect on many enzymes due to their nature of protein precipitation and therefore contribute a protective function in barks and heartwood.

image

20.5 Chemical Tests

2. Phenazone Test: To 5ml of aqueous solution of tannin containing drug, add 0.5g of sodium acid phosphate. Warm the solution, cool, and filter. Add 2% phenazone solution to the filtrate. All tannins are precipitated as bulky, coloured precipitate.
3. Gelatin Test: To a 1% gelatine solution, add little 10% sodium chloride. If a 1% solution of tannin is added to the gelatine solution, tannins cause precipitation of gelatine from solution.
4. Test for Catechin (Matchstick Test): Catechin test is the modification of the well-known phloroglucinol test for lignin. Matchstick contains lignin. Dip a matchstick in the dilute extract of the drug, dry, moisten it with concentrated hydrochloric acid, and warm it near a flame. Catechin in the presence of acid produces phloroglucinol which stains the lignified wood pink or red.
5. Test for chlorogenic acid: A dilute solution of chlorogenic acid containing extract, if treated with aqueous ammonia and exposed to air, slowly turns green indicating the presence of chlorogenic acid.
6. Vanillin-hydrochloric acid test: Drug shows pink or red colour with a mixture of vanillin: alcohol : dilute HCl in the ratio 1:10:10. The reaction produces phloroglucinol which along with vanillin gives pink or red colour.

20.8 Hydrolysable Tannins

Myrobalan

Bahera

Arjuna

Amla

Nutgalls

20.10 Condensed Tannins

Ashoka

Pale Catechu

Black Catechu

Pterocarpus