Page 15 

CHAPTER 2 Cells and Tissues of the Immune System

CELLS OF THE IMMUNE SYSTEM, 16
Phagocytes, 16
Mast Cells, Basophils, Eosinophils, 18
Antigen-Presenting Cells, 19
Lymphocytes, 20
ANATOMY AND FUNCTIONS OF LYMPHOID TISSUES, 26
Bone Marrow, 26
Thymus, 28
The Lymphatic System, 29
Lymph Nodes, 30
Spleen, 33
Regional Immune Systems, 34
SUMMARY, 34

The cells of the innate and adaptive immune system are normally present as circulating cells in the blood and lymph, as anatomically defined collections in lymphoid organs, and as scattered cells in virtually all tissues. The anatomic organization of these cells and their ability to circulate and exchange among blood, lymph, and tissues are of critical importance for the generation of immune responses. The immune system faces numerous challenges to generate effective protective responses against infectious pathogens. First, the system must be able to respond rapidly to small numbers of many different microbes that may be introduced at any site in the body. Second, in the adaptive immune response, very few naive lymphocytes specifically recognize and respond to any one antigen. Third, the effector mechanisms of the adaptive immune system (antibodies and effector T cells) may have to locate and destroy microbes at sites that are distant from the site where the immune response was induced. The ability of the immune system to meet these challenges and to perform its protective functions optimally is dependent on several properties of its cells and tissues. The major cells and tissues of the immune system and their important roles are the following:

Macrophages are phagocytes that are constitutively present in tissues and respond rapidly to microbes that enter these tissues.
Neutrophils, an abundant type of phagocyte, and monocytes, the precursors of tissue macrophages, are always present in the blood and can be quickly delivered anywhere in the body.
Specialized tissues, called peripheral lymphoid organs, function to concentrate microbial antigens that are introduced through the common portals of entry (skin and gastrointestinal and respiratory tracts). The capture of antigen and its transport to lymphoid organs are the first steps in adaptive immune responses. Antigens that are transported to lymphoid organs are displayed by antigen-presenting cells (APCs) for recognition by specific lymphocytes.
Almost all tissues contain dendritic cells, which are APCs that are specialized to capture microbial antigens, to transport them to lymphoid tissues, and to present them for recognition by lymphocytes.
Naive lymphocytes (lymphocytes that have not previously encountered antigens) migrate through these peripheral lymphoid organs, where they recognize antigens and initiate adaptive immune responses. The anatomy of lymphoid organs promotes cell-cell interactions that are required for antigen recognition by lymphocytes and for the activation of naive lymphocytes, resulting in the generation of effector and memory lymphocytes.
Effector and memory lymphocytes circulate in the blood, home to peripheral sites of antigen entry, and are efficiently retained at these sites. This ensures that immunity is systemic (i.e., that protective mechanisms can act anywhere in the body).

Immune responses develop through a series of steps, in each of which the special properties of immune cells and tissues play critical roles. This chapter describes the cells, tissues, and organs that compose the immune system. In Chapter 3, we describe the traffic patterns of lymphocytes throughout the body and the mechanisms of migration of lymphocytes and other leukocytes.

  Page 16 

Cells of the Immune System

The cells that serve specialized roles in innate and adaptive immune responses are phagocytes, dendritic cells, antigen-specific lymphocytes, and various other leukocytes that function to eliminate antigens. The cells of the immune system were introduced briefly in Chapter 1. Here we describe the morphology and functional characteristics of phagocytes, other leukocytes, APCs, and lymphocytes and how these cells are organized in lymphoid tissues. The numbers of some of these cell types in the blood are listed in Table 2-1. Although most of these cells are found in the blood, their responses to microbes are usually localized to tissues and are generally not reflected in changes in the total numbers of circulating leukocytes.

TABLE 2–1 Normal Blood Cell Counts

  Mean Number per Microliter Normal Range
White blood cells (leukocytes) 7400 4500-11,000
Neutrophils 4400 1800-7700
Eosinophils 200 0-450
Basophils 40 0-200
Lymphocytes 2500 1000-4800
Monocytes 300 0-800

Phagocytes

Phagocytes, including neutrophils and macrophages, are cells whose primary function is to identify, ingest, and destroy microbes. The functional responses of phagocytes in host defense consist of sequential steps: recruitment of the cells to the sites of infection, recognition of and activation by microbes, ingestion of the microbes by the process of phagocytosis, and destruction of ingested microbes. In addition, through direct contact and by secreting proteins, phagocytes communicate with other cells in ways that promote or regulate immune responses. The effector functions of phagocytes are important in innate immunity, discussed in Chapter 4, and also in the effector phase of some adaptive immune responses, as we will discuss in Chapter 10. As a prelude to more detailed discussions of the role of phagocytes in immune responses in later chapters, we will now describe their morphologic features and briefly introduce the functional responses of neutrophils and macrophages.

Neutrophils

Neutrophils, also called polymorphonuclear leukocytes, are the most abundant population of circulating white blood cells and mediate the earliest phases of inflammatory reactions. Neutrophils circulate as spherical cells about 12 to 15 µm in diameter with numerous membranous projections. The nucleus of a neutrophil is segmented into three to five connected lobules, hence the synonym polymorphonuclear leukocyte (Fig. 2-1A). The cytoplasm contains granules of two types. The majority, called specific granules, are filled with enzymes such as lysozyme, collagenase, and elastase. These granules do not stain strongly with either basic or acidic dyes (hematoxylin and eosin, respectively), which distinguishes neutrophil granules from those of two other types of circulating granulocytes, called basophils and eosinophils. The remainder of the granules of neutrophils, called azurophilic granules, are lysosomes containing enzymes and other microbicidal substances, including defensins and cathelicidins, which we will discuss in Chapter 4. Neutrophils are produced in the bone marrow and arise from a common lineage with mononuclear phagocytes. Production of neutrophils is stimulated by granulocyte colony-stimulating factor (G-CSF). An adult human produces more than 1 × 1011 neutrophils per day, each of which circulates in the blood for only about 6 hours. Neutrophils may migrate to sites of infection within a few hours after the entry of microbes. If a circulating neutrophil is not recruited into a site of inflammation within this period, it undergoes apoptosis and is usually phagocytosed by resident macrophages in the liver or spleen. After entering tissues, neutrophils function for a few hours and then die.

image image image image

FIGURE 2–1 Morphology of neutrophils, mast cells, basophils, and eosinophils.

A, The light micrograph of a Wright-Giemsa–stained blood neutrophil shows the multilobed nucleus, because of which these cells are also called polymorphonuclear leukocytes, and the faint cytoplasmic granules. B, The light micrograph of a Wright-Giemsa–stained section of skin shows a mast cell (arrow) adjacent to a small blood vessel, identifiable by the red blood cell in the lumen. The cytoplasmic granules in the mast cell, which are stained purple, are filled with histamine and other mediators that act on adjacent blood vessels to promote increased blood flow and delivery of plasma proteins and leukocytes into the tissue.

(Courtesy of Dr. George Murphy, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.)

C, The light micrograph of a Wright-Giemsa–stained blood basophil shows the characteristic blue-staining cytoplasmic granules.

(Courtesy of Dr. Jonathan Hecht, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.)

D, The light micrograph of a Wright-Giemsa–stained blood eosinophil shows the characteristic segmented nucleus and red staining of the cytoplasmic granules.

  Page 17 

Mononuclear Phagocytes

The mononuclear phagocyte system consists of cells whose primary function is phagocytosis and that play central roles in innate and adaptive immunity. The cells of the mononuclear phagocyte system originate from a common precursor in the bone marrow, circulate in the blood, and mature and become activated in various tissues (Fig. 2-2). The cell type in this lineage that enters the peripheral blood from the marrow is incompletely differentiated and is called the monocyte. Monocytes are 10 to 15 µm in diameter, and they have bean-shaped nuclei and finely granular cytoplasm containing lysosomes, phagocytic vacuoles, and cytoskeletal filaments (Fig. 2-3). Monocytes are heterogeneous and consist of at least two subsets, which are distinguishable by cell surface proteins and kinetics of migration into tissues. One population is called inflammatory because it is rapidly recruited from the blood into sites of tissue inflammation. The other type may be the source of tissue resident macrophages and some dendritic cells.

image

FIGURE 2–2 Maturation of mononuclear phagocytes and dendritic cells.

Both dendritic cells and monocytes arise from a common precursor cell of the myeloid lineage in the bone marrow, and differentiation into monocytes or dendritic cells is driven by the cytokines monocyte colony-stimulating factor and Flt3 ligand, respectively (not shown). Dendritic cells further differentiate into subsets, the two major being conventional dendritic cells and plasmacytoid dendritic cells. Some dendritic cells may arise from monocytes in inflamed tissues. When blood monocytes are recruited into tissues, they become macrophages. Long-lived resident macrophages are present in all tissues of the body. At least two populations of blood monocytes exist (not shown), which are precursors, respectively, of macrophages that accumulate in response to infections and macrophages that are constitutively present in normal tissues. Macrophages in tissues become activated to perform antimicrobial and tissue repair functions in response to infections and tissue injury. Macrophages differentiate into specialized forms in particular tissues. CNS, central nervous system; DC, dendritic cell.

image image image

FIGURE 2–3 Morphology of mononuclear phagocytes.

A, Light micrograph of a monocyte in a peripheral blood smear. B, Electron micrograph of a peripheral blood monocyte.

(Courtesy of Dr. Noel Weidner, Department of Pathology, University of California, San Diego.)

C, Electron micrograph of an activated tissue macrophage showing numerous phagocytic vacuoles and cytoplasmic organelles.

(From Fawcett DW. Bloom and Fawcett: A Textbook of Histology, 12th ed. Chapman & Hall, New York, 1994. With kind permission of Springer Science and Business Media.)

Once they enter tissues, these monocytes mature and become macrophages. Macrophages in different tissues have been given special names to designate specific locations. For instance, in the central nervous system, they are called microglial cells; when lining the vascular sinusoids of the liver, they are called Kupffer cells; in pulmonary airways, they are called alveolar macrophages; and multinucleate phagocytes in bone are called osteoclasts.

Macrophages perform several important functions in innate and adaptive immunity.

A major function of macrophages in host defense is to ingest and kill microbes. The mechanisms of killing, which are discussed in Chapter 4, include the enzymatic generation of reactive oxygen and nitrogen species that are toxic to microbes, and proteolytic digestion.
  Page 18 
In addition to ingesting microbes, macrophages also ingest dead host cells as part of the cleaning up process after infection or sterile tissue injury. For example, they phagocytose dead neutrophils, which rapidly accumulate in sites of infection or tissue death caused by trauma or interrupted blood supply. Macrophages also recognize and engulf apoptotic cells before the dead cells can release their contents and induce inflammatory responses. Throughout the body and throughout the life of an individual, unwanted cells die by apoptosis, as part of many physiologic processes, such as development, growth, and renewal of healthy tissues, and the dead cells must be cleaned up by macrophages.
Activated macrophages secrete proteins, called cytokines, that bind to signaling receptors on other cells and thereby instruct those cells to respond in ways that contribute to host defense. For example, some cytokines act on endothelial cells lining blood vessels to enhance the recruitment of more monocytes from the blood into sites of infections, thereby amplifying the protective response against the microbes. There are many different cytokines that are involved in every aspect of immune responses. The general properties and different classes of cytokines were discussed in Chapter 1.
Macrophages serve as APCs that display antigens to and activate T lymphocytes. This function is important in the effector phase of T cell–mediated immune responses (see Chapter 10).
Another important function of macrophages is to promote repair of damaged tissues by stimulating new blood vessel growth (angiogenesis) and synthesis of collagen-rich extracellular matrix (fibrosis). This function is mediated by certain cytokines secreted by the macrophages that act on various tissue cells.

Macrophages are activated to perform their functions by recognizing many different kinds of microbial molecules as well as host molecules produced in response to infections. These various activating molecules bind to specific signaling receptors located on the surface of or inside the macrophage. An example of these receptors is the Toll-like receptors, which are of central importance in innate immunity and will be discussed in detail in Chapter 4. Macrophages are also activated when receptors on their plasma membrane bind opsonins on the surface of microbes. Opsonins are substances that coat particles for phagocytosis. Examples of these opsonin receptors are complement receptors and antibody Fc receptors, discussed in Chapter 12. In adaptive immunity, macrophages are activated by secreted cytokines and membrane proteins made by T lymphocytes, discussed in Chapter 10.

Macrophages can acquire distinct functional capabilities, depending on the types of activating stimuli. The clearest example of this is the response of macrophages to different cytokines made by subsets of T cells. Some of these cytokines activate macrophages to become efficient at killing microbes, called classical activation. Other cytokines activate macrophages to promote tissue remodeling and repair, called alternative activation. The details of these different forms of activation, and the cytokines involved, are discussed in Chapter 10. Macrophages may also assume different morphologic forms after activation by external stimuli, such as microbes. Some develop abundant cytoplasm and are called epithelioid cells because of their resemblance to epithelial cells of the skin. Activated macrophages can fuse to form multinucleate giant cells.

Macrophage-like cells are phylogenetically the oldest mediators of innate immunity. Drosophila responds to infection by surrounding microbes with “hemocytes,” which are similar to macrophages, and these cells phagocytose the microbes and wall off the infection by inducing coagulation of the surrounding hemolymph. Similar phagocyte-like cells have been identified even in plants.

Macrophages typically respond to microbes nearly as rapidly as neutrophils do, but macrophages survive much longer at sites of inflammation. Unlike neutrophils, macrophages are not terminally differentiated and can undergo cell division at an inflammatory site. Therefore, macrophages are the dominant effector cells of the later stages of the innate immune response, several days after infection.

Mast Cells, Basophils, Eosinophils

Mast cells, basophils, and eosinophils are three additional cells that play roles in innate and adaptive immune responses. All three cell types share the common feature of having cytoplasmic granules filled with various inflammatory and antimicrobial mediators. Another common feature of these cells is their involvement in immune responses that protect against helminths and immune responses that cause allergic diseases. We will describe the major features of these cells in this section and discuss their functions in more detail in Chapter 19.

  Page 19 

Mast Cells

Mast cells are bone marrow–derived cells that are present in the skin and mucosal epithelium and contain abundant cytoplasmic granules filled with cytokines histamine, and other mediators. Stem cell factor (also called c-Kit ligand) is a cytokine that is essential for mast cell development. Normally, mature mast cells are not found in the circulation but are constitutively present in healthy tissues, usually adjacent to small blood vessels and nerves. Human mast cells vary in shape and have round nuclei, and the cytoplasm contains membrane-bound granules (see Fig. 2-1B). The granules contain acidic proteoglycans that bind basic dyes. Mast cells express plasma membrane receptors for IgE and IgG antibodies and are usually coated with these antibodies. When these antibodies on the mast cell surface also bind antigen, signaling events are induced that lead to release of the cytoplasmic granule contents into the extracellular space. The released contents of the granules, including cytokines and histamine, promote changes in the blood vessels that cause inflammation. Mast cells also express other activating receptors that recognize complement proteins, neuropeptides, and microbial products. Mast cells provide defense against helminths but are also responsible for symptoms of allergic diseases (see Chapter 19).

Basophils

Basophils are blood granulocytes with many structural and functional similarities to mast cells. Like other granulocytes, basophils are derived from bone marrow progenitors (a lineage different from that of mast cells), mature in the bone marrow, and circulate in the blood. Basophils constitute less than 1% of blood leukocytes (see Table 2-1). Although they are normally not present in tissues, basophils may be recruited to some inflammatory sites. Basophils contain granules that bind basic dyes (see Fig. 2-1C), and they are capable of synthesizing many of the same mediators as mast cells. Like mast cells, basophils express IgG and IgE receptors, bind IgE, and can be triggered by antigen binding to the IgE. Because basophil numbers are low in tissues, their importance in host defense and allergic reactions is uncertain.

Eosinophils

Eosinophils are blood granulocytes that express cytoplasmic granules containing enzymes that are harmful to the cell walls of parasites but can also damage host tissues. The granules of eosinophils contain basic proteins that bind acidic dyes such as eosin (see Fig. 2-1D). Like neutrophils and basophils, eosinophils are bone marrow derived. GM-CSF, IL-3, and IL-5 promote eosinophil maturation from myeloid precursors. Some eosinophils are normally present in peripheral tissues, especially in mucosal linings of the respiratory, gastrointestinal, and genitourinary tracts, and their numbers can increase by recruitment from the blood in the setting of inflammation.

Antigen-Presenting Cells

Antigen-presenting cells (APCs) are cell populations that are specialized to capture microbial and other antigens, display them to lymphocytes, and provide signals that stimulate the proliferation and differentiation of the lymphocytes. By convention, APC usually refers to a cell that displays antigens to T lymphocytes. The major type of APC that is involved in initiating T cell responses is the dendritic cell. Macrophages and B cells present antigens to T lymphocytes in different types of immune responses, and a specialized cell type called the follicular dendritic cell displays antigens to B lymphocytes during particular phases of humoral immune responses. APCs link responses of the innate immune system to responses of the adaptive immune system, and therefore they may be considered components of both systems. In addition to the introduction presented here, APC function will be described in more detail in Chapter 6.

Dendritic Cells

Dendritic cells are the most important APCs for activating naive T cells, and they play major roles in innate responses to infections and in linking innate and adaptive immune responses. They have long membranous projections and phagocytic capabilities and are widely distributed in lymphoid tissues, mucosal epithelium, and organ parenchyma (Fig. 2-4). Dendritic cells are part of the myeloid lineage of hematopoietic cells and arise from a precursor that can also differentiate into monocytes but not granulocytes (see Fig. 2-2). Maturation of dendritic cells is dependent on a cytokine called Flt3 ligand, which binds to the Flt3 tyrosine kinase receptor on the precursor cells. Similar to macrophages, dendritic cells express receptors that recognize molecules typically made by microbes and not mammalian cells, and they respond to the microbes by secreting cytokines. The majority of dendritic cells are called conventional dendritic cells. In response to activation by microbes, conventional dendritic cells in skin, mucosa, and organ parenchyma become mobile, migrate to lymph nodes, and display microbial antigens to T lymphocytes. Thus, these cells function in both innate and adaptive immune responses and are a link between these two components of host defense. One subpopulation of dendritic cells, called plasmacytoid dendritic cells, are early cellular responders to viral infection. They recognize nucleic acids of intracellular viruses and produce soluble proteins called type I interferons, which have potent antiviral activities. We will discuss the role of dendritic cells as mediators of innate immunity and as APCs in Chapters 4 and 6, respectively.

image

FIGURE 2–4 A dendritic cell.

The fluorescence photomicrograph shows a bone marrow–derived dendritic cell in which class II MHC molecules appear green, highlighting the fine cytoplasmic processes characteristic of dendritic cells, and the nucleus appears blue. Class II MHC molecules are highly expressed in dendritic cells and are important for their function (see Chapter 6).

(Courtesy of Scott Loughhead and Uli Van Andrian, Harvard Medical School, Boston, Massachusetts.)

Antigen-Presenting Cells for Effector T Lymphocytes

In addition to dendritic cells, macrophages and B lymphocytes perform important antigen-presenting functions in CD4+ helper T cell–mediated immune responses. Macrophages present antigen to helper T lymphocytes at the sites of infection, which leads to helper T cell activation and production of molecules that further activate the macrophages. This process is important for the eradication of microbes that are ingested by the phagocytes but resist killing; in these cases, helper T cells greatly enhance the microbicidal activities of the macrophages. B cells present antigens to helper T cells in lymph nodes and spleen, which is a key step in the cooperation of helper T cells with B cells in humoral immune responses to protein antigens. These functions of macrophages and B cells will be discussed in Chapters 10 and 11. Cytotoxic T lymphocytes (CTLs) are effector CD8+ T cells that can recognize antigens on any type of nucleated cell and become activated to kill the cell. Therefore, all nucleated cells are potentially APCs for CTLs.

  Page 20 

Follicular Dendritic Cells

Follicular dendritic cells (FDCs) are cells with membranous projections that are found intermingled in specialized collections of activated B cells, called germinal centers, in the lymphoid follicles of the lymph nodes, spleen, and mucosal lymphoid tissues. FDCs are not derived from precursors in the bone marrow and are unrelated to the dendritic cells that present antigens to T lymphocytes. FDCs trap antigens complexed to antibodies or complement products and display these antigens on their surfaces for recognition by B lymphocytes. This is important for the selection of activated B lymphocytes whose antigen receptors bind the displayed antigens with high affinity (see Chapter 11).

Lymphocytes

Lymphocytes, the unique cells of adaptive immunity, are the only cells in the body that express clonally distributed antigen receptors, each with a fine specificity for a different antigenic determinant. Each clone of lymphocytes consists of the progeny of one cell and expresses antigen receptors with a single specificity. This is why the total population of antigen receptors in the adaptive immune system is said to be clonally distributed. As we shall discuss here and in later chapters, there are millions of lymphocyte clones in the body, enabling the organism to recognize and respond to millions of foreign antigens.

The role of lymphocytes as the cells that mediate adaptive immunity was established during decades of research by several lines of evidence. One of the earliest clues about the importance of lymphocytes in adaptive immunity came from the discovery that humans with congenital and acquired immune deficiency states had reduced numbers of lymphocytes in the peripheral circulation and in lymphoid tissues. Furthermore, physicians noted that depletion of lymphocytes with drugs or irradiation impaired immune protection against infection. Experiments done mainly with mice showed that protective immunity to microbes can be adoptively transferred from immunized to naive animals only by lymphocytes or their secreted products. In vitro experiments established that stimulation of lymphocytes with antigens leads to responses that show many of the characteristics of immune responses induced under more physiologic conditions in vivo. Following the identification of lymphocytes as the mediators of humoral and cellular immunity, many discoveries were made at a rapid pace about different types of lymphocytes, their origins in the bone marrow and thymus, and the consequences of the absence of each type of lymphocyte. These discoveries relied on many tools, including genetically modified mice and reagents that selectively deplete one or another type of lymphocyte. Among the most important of these discoveries was that clonally distributed, highly diverse and specific receptors for antigens are produced by lymphocytes but not by any other types of cells. During the past two decades, there has been an enormous expansion of information about lymphocyte genes, proteins, and functions. We probably now know more about lymphocytes than about any other cells in all of biology.

One of the most interesting questions about lymphocytes has been how the enormously diverse repertoire of antigen receptors, and therefore specificities, is generated from a small number of genes for these receptors in the germline. It is now known that the genes encoding the antigen receptors of lymphocytes are formed by recombination of DNA segments during the maturation of these cells. There is a random aspect to these somatic recombination events that results in the generation of millions of different receptor genes and a highly diverse repertoire of antigen specificities among different clones of lymphocytes (see Chapter 8).

  Page 21 

The total number of lymphocytes in a healthy adult is about 5 × 1011. Of these, ~2% are in the blood, ~10% in the bone marrow, ~15% in the mucosal lymphoid tissues of the gastrointestinal and respiratory tracts, and ~65% in lymphoid organs (mainly the lymph nodes and spleen). We first describe the properties of these cells and then their organization in various lymphoid tissues.

Subsets of Lymphocytes

Lymphocytes consist of distinct subsets that are different in their functions and protein products (Table 2-2). The major classes of lymphocytes were introduced in Chapter 1 (see Fig. 1-5). Morphologically, all lymphocytes are similar, and their appearance does not reflect their heterogeneity or their diverse functions. B lymphocytes, the cells that produce antibodies, were so called because in birds they were found to mature in an organ called the bursa of Fabricius. In mammals, no anatomic equivalent of the bursa exists, and the early stages of B cell maturation occur in the bone marrow. Thus, “B” lymphocytes refer to bursa-derived lymphocytes or bone marrow–derived lymphocytes. T lymphocytes, the mediators of cellular immunity, were named because their precursors, which arise in the bone marrow, migrate to and mature in the thymus; “T” lymphocytes refer to thymus-derived lymphocytes. B and T lymphocytes each consist of subsets with distinct phenotypic and functional characteristics. The major subsets of B cells are follicular B cells, marginal zone B cells, and B-1 B cells, each of which is found in distinct anatomic locations within lymphoid tissues. The two major T cell subsets are helper CD4+ T lymphocytes and CD8+ CTLs, which express an antigen receptor called the αβ receptor. CD4+ regulatory T cells are a third unique subset of T cells expressing the αβ receptor. Another population of T cells, called γδ T cells, expresses a similar but structurally distinct type of antigen receptor. The different functions of these classes of B and T cells will be discussed in later chapters.

TABLE 2–2 Lymphocyte Classes

image

The major populations of B cells and T cells express highly diverse, clonally distributed sets of antigen receptors. Some numerically minor subsets of lymphocytes, including γδ T cells, marginal zone B cells, and B-1 B cells, are restricted in their use of DNA segments that contribute to their antigen receptor genes, and these lymphocyte subsets have very limited diversity.

  Page 22 

In addition to B and T cells, there exist other populations of cells that are called lymphocytes on the basis of morphology and certain functional and molecular criteria but that are not readily categorized as T or B cells. Natural killer (NK) cells, which are described in Chapter 4, have similar effector functions as CTLs, but their receptors are distinct from B or T cell antigen receptors and are not encoded by somatically recombined genes. NKT cells are a numerically small population of T lymphocytes that are so named because they express a surface molecule typically found on NK cells. They express αβ antigen receptors that are encoded by somatically recombined genes, but like γδ T cells and B-1 B cells, they lack diversity. NKT cells, γδ T cells, and B-1 B cells may all be considered part of both adaptive and innate immune systems.

Membrane proteins are used as phenotypic markers to distinguish distinct populations of lymphocytes (see Table 2-2). For instance, most helper T cells express a surface protein called CD4, and most CTLs express a different surface protein called CD8. These and many other surface proteins are often called markers because they identify and discriminate between (“mark”) different cell populations. These markers not only delineate the different classes of lymphocytes but also have many functions in the cell types in which they are expressed. The most common way to determine if a surface phenotypic marker is expressed on a cell is to test if antibodies specific for the marker bind to the cell. In this context, the antibodies are used by investigators or clinicians as analytical tools. There are available thousands of different pure antibody preparations, called monoclonal antibodies, each specific for a different molecule and labeled with probes that can be readily detected on cell surfaces by use of appropriate instruments. (Monoclonal antibodies are described in Chapter 5, and methods to detect labeled antibodies bound to cells are discussed in Appendix IV.) The cluster of differentiation (CD) system is a widely adopted uniform method for naming cell surface molecules that are characteristic of a particular cell lineage or differentiation stage, have a defined structure, and are recognized by a group (“cluster”) of monoclonal antibodies. Thus, all structurally well defined cell surface molecules are given a CD number designation (e.g., CD1, CD2). A current list of CD markers for leukocytes that are mentioned in the book is provided in Appendix III.

Development of Lymphocytes

After birth, lymphocytes, like all blood cells, arise from stem cells in the bone marrow. The origin of lymphocytes from bone marrow progenitors was first demonstrated by experiments with radiation-induced bone marrow chimeras. Lymphocytes and their precursors are radiosensitive and are killed by high doses of γ-irradiation. If a mouse of one inbred strain is irradiated and then injected with bone marrow cells or small numbers of hematopoietic stem cells of another strain that can be distinguished from the host, all the lymphocytes that develop subsequently are derived from the bone marrow cells or hematopoietic stem cells of the donor. Such approaches have proved useful for examining the maturation of lymphocytes and other blood cells.

All lymphocytes go through complex maturation stages during which they express antigen receptors and acquire the functional and phenotypic characteristics of mature cells. The anatomic sites where the major steps in lymphocyte development occur are called the generative lymphoid organs. These include the bone marrow, where precursors of all lymphocytes arise and B cells mature, and the thymus, where T cells mature (Fig. 2-5). We will discuss the processes of B and T lymphocyte maturation in much more detail in Chapter 8. These mature B and T cells are called naive lymphocytes. After activation by antigen, lymphocytes go through sequential changes in phenotype and functional capacity.

image

FIGURE 2–5 Maturation of lymphocytes.

Lymphocytes develop from bone marrow stem cells and mature in the generative lymphoid organs (bone marrow and thymus for B and T cells, respectively) and then circulate through the blood to secondary lymphoid organs (lymph nodes, spleen, regional lymphoid tissues such as mucosa-associated lymphoid tissues). Fully mature T cells leave the thymus, but immature B cells leave the bone marrow and complete their maturation in secondary lymphoid organs. Naive lymphocytes may respond to foreign antigens in these secondary lymphoid tissues or return by lymphatic drainage to the blood and recirculate through other secondary lymphoid organs.

  Page 23 

Populations of Lymphocytes Distinguished by History of Antigen Exposure

In adaptive immune responses, naive lymphocytes that emerge from the bone marrow or thymus migrate into peripheral lymphoid organs, where they are activated by antigens to proliferate and differentiate into effector and memory cells, some of which then migrate into tissues (Fig. 2-6). The activation of lymphocytes follows a series of sequential steps beginning with the synthesis of new proteins, such as cytokine receptors and cytokines, which are required for many of the subsequent changes. The naive cells then undergo proliferation, resulting in increased size of the antigen-specific clones, a process that is called clonal expansion. In some infections, the numbers of microbe-specific T cells may increase more than 50,000-fold, and the numbers of specific B cells may increase up to 5000-fold. This rapid clonal expansion of microbe-specific lymphocytes is needed to keep pace with the ability of microbes to rapidly replicate and expand in numbers. Concurrently with clonal expansion, antigen-stimulated lymphocytes differentiate into effector cells whose function is to eliminate the antigen. Some of the progeny of antigen-stimulated B and T lymphocytes differentiate into long-lived memory cells, whose function is to mediate rapid and enhanced (i.e., secondary) responses to subsequent exposures to antigens. Distinct populations of lymphocytes (naive, effector, and memory) are always present in various sites throughout the body, and these populations can be distinguished by several functional and phenotypic criteria (Table 2-3).

image

FIGURE 2–6 The anatomy of lymphocyte activation.

Naive T cells emerging from the thymus and immature B cells emerging from the bone marrow migrate into secondary lymphoid organs, including lymph nodes and spleen. In these locations, B cells complete their maturation; naive B and T cells activated by antigens differentiate into effector and memory lymphocytes. Some effector and memory lymphocytes migrate into peripheral tissue sites of infection. Antibodies secreted by effector B cells in lymph node, spleen, and bone marrow (not shown) enter the blood and are delivered to sites of infection.

TABLE 2–3 Characteristics of Naive, Effector, and Memory Lymphocytes

image

The details of lymphocyte activation and differentiation as well as the functions of each of these populations will be addressed later in this book. Here we summarize the phenotypic characteristics of each population.

Naive Lymphocytes

Naive lymphocytes are mature T or B cells that reside in the peripheral lymphoid organs and circulation and have never encountered foreign antigen. (The term naive refers to the idea that these cells are immunologically inexperienced because they have not encountered antigen.) Naive lymphocytes typically die after 1 to 3 months if they do not recognize antigens. Naive and memory lymphocytes, discussed later, are both called resting lymphocytes because they are not actively dividing, nor are they performing effector functions. Naive (and memory) B and T lymphocytes cannot be readily distinguished morphologically and are both often called small lymphocytes when observed in blood smears or by flow cytometry (a technique described in Appendix IV). A small lymphocyte is 8 to 10 µm in diameter and has a large nucleus with dense heterochromatin and a thin rim of cytoplasm that contains a few mitochondria, ribosomes, and lysosomes but no visible specialized organelles (Fig. 2-7). Before antigenic stimulation, naive lymphocytes are in a state of rest, or in the G0 stage of the cell cycle. In response to stimulation, they enter the G1 stage of the cell cycle before going on to divide. Activated lymphocytes are larger (10 to 12 µm in diameter), have more cytoplasm and organelles and increased amounts of cytoplasmic RNA, and are called large lymphocytes or lymphoblasts (see Fig. 2-7).

image image image image

FIGURE 2–7 Morphology of lymphocytes.

A, Light micrograph of a lymphocyte in a peripheral blood smear.

(Courtesy of Jean Shafer, Department of Pathology, University of California, San Diego. Copyright 1995-2008, Carden Jennings Publishing Co., Ltd.)

B, Electron micrograph of a small lymphocyte.

(Courtesy of Dr. Noel Weidner, Department of Pathology, University of California, San Diego.)

C, Light micrograph of a large lymphocyte (lymphoblast).

(Courtesy of Jean Shafer, Department of Pathology, University of California, San Diego. Copyright 1995-2008, Carden Jennings Publishing Co., Ltd.)

D, Electron micrograph of a large lymphocyte (lymphoblast).

(From Fawcett DW. Bloom and Fawcett: A Textbook of Histology, 12th ed. Chapman & Hall, New York, 1994. With kind permission of Springer Science and Business Media.)

  Page 24 

The survival of naive lymphocytes depends on two types of signals, some of which are generated by antigen receptors and others by cytokines. It is postulated that the antigen receptor of naive B cells generates survival signals even in the absence of antigen, and naive T lymphocytes recognize various self antigens “weakly,” enough to generate survival signals but without triggering the stronger signals that are needed to initiate clonal expansion and differentiation into effector cells. The need for antigen receptor expression to maintain the pool of naive lymphocytes in peripheral lymphoid organs has been demonstrated by studies with mice in which the genes that encode the antigen receptors of B cells or T cells were deleted after the lymphocytes matured. (The method used, called the Cre/lox recombinase technique, is described in Appendix IV.) In these studies, naive lymphocytes that lost their antigen receptors died within 2 or 3 weeks.

Cytokines are also essential for the survival of naive lymphocytes, and naive T and B cells constitutively express receptors for these cytokines. The most important of these cytokines are interleukin-7 (IL-7), which promotes survival and, perhaps, low-level cycling of naive T cells, and B cell–activating factor (BAFF) belonging to the TNF family, which is required for naive B cell survival.

In the steady state, the pool of naive lymphocytes is maintained at a fairly constant number because of a balance between spontaneous death of these cells and the generation of new cells in the generative lymphoid organs. Any loss of lymphocytes leads to a compensatory proliferation of the remaining ones and increased output from the generative organs. A demonstration of the ability of the lymphocyte population to “fill” the available space is the phenomenon of homeostatic proliferation. If naive cells are transferred into a host that is deficient in lymphocytes (said to be lymphopenic) because of inherited defects or the effects of irradiation, the transferred lymphocytes begin to proliferate and increase in number until they reach roughly the numbers of lymphocytes in normal animals. Homeostatic proliferation appears to be driven by the same signals—weak recognition of some self antigens and cytokines, mainly IL-7—that are required for the maintenance of naive lymphocytes.

  Page 25 

Effector Lymphocytes

After naive lymphocytes are activated, they become larger and proliferate and are called lymphoblasts. Some of these cells differentiate into effector lymphocytes that have the ability to produce molecules capable of eliminating foreign antigens; effector lymphocytes include helper T cells, CTLs, and antibody-secreting plasma cells. Helper T cells, which are usually CD4+, express surface molecules such as CD40 ligand (CD154) and secrete cytokines that interact with macrophages and B lymphocytes, leading to their activation. CTLs have cytoplasmic granules filled with proteins that, when released, kill the cells that the CTLs recognize, which are usually virus-infected and tumor cells. Both CD4+ and CD8+ effector T cells usually express surface proteins indicative of recent activation, including CD25 (a component of the receptor for the T cell growth factor IL-2), and altered patterns of adhesion molecules (selectins and integrins, discussed in Chapter 3). The majority of differentiated effector T lymphocytes are short-lived and not self-renewing.

Many antibody-secreting B cells are morphologically identifiable as plasma cells. They have characteristic nuclei, abundant cytoplasm containing dense, rough endoplasmic reticulum that is the site where antibodies (and other secreted and membrane proteins) are synthesized, and distinct perinuclear Golgi complexes where antibody molecules are converted to their final forms and packaged for secretion (Fig. 2-8). It is estimated that half or more of the messenger RNA in plasma cells codes for antibody proteins. Plasma cells develop in lymphoid organs and at sites of immune responses and some of them migrate to the bone marrow, where they may live and secrete antibodies for long periods after the immune response is induced and even after the antigen is eliminated. Circulating antibody-secreting cells, called plasmablasts, are rare, and may be precursors of long-lived plasma cells in tissues.

image

FIGURE 2–8 Morphology of plasma cells.

A, Light micrograph of a plasma cell in tissue. B, Electron micrograph of a plasma cell.

(Courtesy of Dr. Noel Weidner, Department of Pathology, University of California, San Diego.)

Memory Lymphocytes

Memory cells may survive in a functionally quiescent or slowly cycling state for months or years without a need for stimulation by antigen and presumably after the antigen is eliminated. They can be identified by their expression of surface proteins that distinguish them from naive and recently activated effector lymphocytes, although it is still not clear which of these surface proteins are definitive markers of memory populations (see Table 2-3). Memory B lymphocytes express certain classes (isotypes) of membrane Ig, such as IgG, IgE, or IgA, as a result of isotype switching, whereas naive B cells express only IgM and IgD (see Chapters 5 and 11). In humans, CD27 expression is a good marker for memory B cells. Memory T cells, like naive but not effector T cells, express high levels of the IL-7 receptor (CD127). Memory T cells also express surface molecules that promote their migration into sites of infection anywhere in the body (discussed later in the chapter). In humans, most naive T cells express a 200-kD isoform of a surface molecule called CD45 that contains a segment encoded by an exon designated A. This CD45 isoform can be recognized by antibodies specific for the A-encoded segment and is therefore called CD45RA (for “restricted A”). In contrast, most activated and memory T cells express a 180-kD isoform of CD45 in which the A exon RNA has been spliced out; this isoform is called CD45RO. However, this way of distinguishing naive from memory T cells is not perfect, and interconversion between CD45RA+ and CD45RO+ populations has been documented.

  Page 26 

Memory cells appear to be heterogeneous, and there are subsets that differ, especially with respect to their location and migratory properties. More details about memory T and B cells will be discussed in Chapters 9 and 11, respectively.

The distinguishing features of naive, effector, and memory lymphocytes reflect different programs of gene expression that are regulated by transcription factors and by stable epigenetic changes, including DNA methylation and chromatin remodeling. Our understating of these molecular determinants of mature lymphocyte phenotype is still incomplete and evolving. For example, a transcription factor called Kruppel-like factor 2 (KLF-2) is required for maintenance of the naive T cell phenotype. The phenotypes of functionally different types of CD4+ effector T cells, called TH1, TH2, and TH17 cells, depend on transcription factors T-bet, GATA-3, and RORγT, respectively, as well as epigenetic changes in cytokine gene loci (see Chapter 9). Other transcription factors are required for maintaining the phenotypes of memory T and B cells.

Anatomy and Functions of Lymphoid Tissues

To optimize the cellular interactions necessary for antigen recognition and lymphocyte activation in adaptive immune responses, lymphocytes and APCs are localized and concentrated in anatomically defined tissues or organs, which are also the sites where foreign antigens are transported and concentrated. Such anatomic compartmentalization is not fixed because, as we will discuss in Chapter 3, many lymphocytes recirculate and constantly exchange between the circulation and the tissues.

Lymphoid tissues are classified as generative organs, also called primary or central lymphoid organs, where lymphocytes first express antigen receptors and attain phenotypic and functional maturity, and as peripheral organs, also called secondary lymphoid organs, where lymphocyte responses to foreign antigens are initiated and develop (see Fig. 2-5). Included in the generative lymphoid organs of adult mammals are the bone marrow and the thymus for B cells and T cells, respectively. B lymphocytes partially mature in the bone marrow, enter the circulation, and then populate peripheral lymphoid organs, including spleen and lymph nodes, where they complete their maturation. T lymphocytes mature completely in the thymus, then enter the circulation and populate peripheral lymphoid organs and tissues. Two important functions shared by the generative organs are to provide growth factors and other molecular signals needed for lymphocyte maturation and to present self antigens for recognition and selection of maturing lymphocytes (see Chapter 8). The peripheral lymphoid organs and tissues include the lymph nodes, spleen, cutaneous immune system, and mucosal immune system. In addition, poorly defined aggregates of lymphocytes are found in connective tissue and in virtually all organs except the central nervous system. All peripheral lymphoid organs also share common functions, including the delivery of antigens and responding naive lymphocytes to the same location so that adaptive immune responses can be initiated and the anatomic segregation of B and T lymphocytes except for specific times when they need to interact.

Bone Marrow

The bone marrow is the site of generation of most mature circulating blood cells, including red cells, granulocytes, and monocytes, and the site of early events in B cell maturation. The generation of all blood cells, called hematopoiesis (Fig. 2-9), occurs initially, during fetal development, in blood islands of the yolk sac and the para-aortic mesenchyme, then shifts to the liver between the third and fourth months of gestation, and gradually shifts again to the bone marrow. At birth, hematopoiesis takes place mainly in the bones throughout the skeleton, but it becomes restricted increasingly to the marrow of the flat bones so that by puberty, hematopoiesis occurs mostly in the sternum, vertebrae, iliac bones, and ribs. The red marrow that is found in these bones consists of a sponge-like reticular framework located between long trabeculae. The spaces in this framework contain a network of blood-filled sinusoids lined by endothelial cells attached to a discontinuous basement membrane. Outside the sinusoids are clusters of the precursors of blood cells in various stages of development as well as mature fat cells. The blood cell precursors mature and migrate through the sinusoidal basement membrane and between endothelial cells to enter the vascular circulation. When the bone marrow is injured or when an exceptional demand for production of new blood cells occurs, the liver and spleen often become sites of extramedullary hematopoiesis.

image

FIGURE 2–9 Hematopoiesis.

The development of the different lineages of blood cells is depicted in this “hematopoietic tree.” Also shown are the principal cytokines that drive the maturation of different lineages. The development of lymphocytes forming the common lymphoid precursor is described later in this chapter and in Figure 8-2, Chapter 8. SCF, stem cell factor; Flt3L, Flt3 ligand; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; LIN, negative for lineage-specific markers; M-CSF, macrophage colony-stimulating factor.

Red cells, granulocytes, monocytes, dendritic cells, platelets, B and T lymphocytes, and NK cells all originate from a common hematopoietic stem cell (HSC) in the bone marrow (see Fig. 2-9). HSCs are pluripotent, meaning that a single HSC can generate all different types of mature blood cells. HSCs are also self-renewing because each time they divide, at least one daughter cell maintains the properties of a stem cell while the other can differentiate along a particular lineage (called asymmetric division). HSCs can be identified by the presence of surface markers, including the proteins CD34 and c-Kit, and the absence of lineage-specific markers. HSCs are maintained within specialized microscopic anatomic niches in the marrow. In these locations, nonhematopoietic stromal cells provide contact-dependent signals and soluble factors required for continuous self-renewing division of the HSCs. HSCs give rise to two kinds of multipotent cells, the common lymphoid and common myeloid progenitors. The common lymphoid progenitor is the source of committed single-lineage precursors of T cells, B cells, or NK cells. Most of the steps in B cell maturation take place in the bone marrow, but the final events may occur after the cells leave the marrow and enter secondary lymphoid organs, particularly the spleen. T cell maturation occurs entirely in the thymus and therefore requires that common lymphoid progenitors or some poorly characterized progeny of these cells migrate out of the marrow into the blood and then into the thymus. NK cell maturation is thought to take place entirely in the bone marrow. The common myeloid progenitors give rise to committed single-lineage progenitors of the erythroid, megakaryocytic, granulocytic, and monocytic lineages, which give rise, respectively, to mature red cells, platelets, granulocytes (neutrophils, eosinophils, basophils), and monocytes. Most dendritic cells arise from the monocytic lineage.

  Page 27 

The proliferation and maturation of precursor cells in the bone marrow are stimulated by cytokines (see Fig. 2-9). Many of these cytokines are called colony-stimulating factors because they were originally assayed by their ability to stimulate the growth and development of various leukocytic or erythroid colonies from marrow cells. Hematopoietic cytokines are produced by stromal cells and macrophages in the bone marrow, thus providing the local environment for hematopoiesis. They are also produced by antigen-stimulated T lymphocytes and cytokine-activated or microbe-activated macrophages, providing a mechanism for replenishing leukocytes that may be consumed during immune and inflammatory reactions. The names and properties of the major hematopoietic cytokines are listed in Table 2-4.

TABLE 2–4 Hematopoietic Cytokines

image
  Page 28 

In addition to self-renewing stem cells and their differentiating progeny, the marrow contains numerous antibody-secreting plasma cells. These plasma cells are generated in peripheral lymphoid tissues as a consequence of antigenic stimulation of B cells and then migrate to the marrow, where they may live and continue to produce antibodies for many years. Some long-lived memory T lymphocytes also migrate to and may reside in the bone marrow.

Thymus

The thymus is the site of T cell maturation. The thymus is a bilobed organ situated in the anterior mediastinum. Each lobe is divided into multiple lobules by fibrous septa, and each lobule consists of an outer cortex and an inner medulla (Fig. 2-10). The cortex contains a dense collection of T lymphocytes, and the lighter-staining medulla is more sparsely populated with lymphocytes. Bone marrow–derived macrophages and dendritic cells are found almost exclusively in the medulla. Scattered throughout the thymus are nonlymphoid epithelial cells, which have abundant cytoplasm. Thymic cortical epithelial cells provide IL-7 required early in T cell development. A subset of these epithelial cells found only in the medulla, called thymic medullary epithelial cells (often abbreviated as TMEC), play a special role in presenting self antigens to developing T cells and causing their deletion. This is one mechanism of ensuring that the immune system remains tolerant to self and is discussed in detail in Chapter 14. In the medulla are structures called Hassall’s corpuscles, which are composed of tightly packed whorls of epithelial cells that may be remnants of degenerating cells. The thymus has a rich vascular supply and efferent lymphatic vessels that drain into mediastinal lymph nodes. The epithelial component of the thymus is derived from invaginations of the ectoderm in the developing neck and chest of the embryo, forming structures called branchial pouches. Dendritic cells, macrophages, and lymphocyte precursors are derived from the bone marrow.

image

FIGURE 2–10 Morphology of the thymus.

A, Low-power light micrograph of a lobe of the thymus showing the cortex and medulla. The darker blue-stained outer cortex and paler blue inner medulla are apparent. B, High-power light micrograph of the thymic medulla. The numerous small blue-staining cells are developing T cells called thymocytes, and the larger pink structure is Hassall’s corpuscle, uniquely characteristic of the thymic medulla but whose function is poorly understood. C, Schematic diagram of the thymus illustrating a portion of a lobe divided into multiple lobules by fibrous trabeculae.

Humans with DiGeorge syndrome suffer from T cell deficiency because of mutations in genes required for thymus development. In the “nude” mouse strain, which has been widely used in immunology research, a mutation in the gene encoding a transcription factor causes a failure of differentiation of certain types of epithelial cells that are required for normal development of the thymus and hair follicles. Consequently, these mice lack T cells and hair.

The lymphocytes in the thymus, also called thymocytes, are T lymphocytes at various stages of maturation. Cells that are committed to the T cell lineage are believed to develop in the bone marrow from common lymphoid progenitor cells, enter the circulation, and home to the thymic cortex through the blood vessels. Further maturation in the thymus begins in the cortex, and as thymocytes mature, they migrate toward the medulla, so that the medulla contains mostly mature T cells. Only mature T cells exit the thymus and enter the blood and peripheral lymphoid tissues. The details of thymocyte maturation are described in Chapter 8.

  Page 29 

The Lymphatic System

The lymphatic system, which consists of specialized vessels that drain fluid from tissues into and out of lymph nodes and then into the blood, is essential for tissue fluid homeostasis and immune responses (Fig. 2-11). Interstitial fluid is constitutively formed in all vascularized tissues by movement of a filtrate of plasma out of capillaries, and the rate of local formation can increase dramatically when tissue is injured or infected. The skin, epithelia, and parenchymal organs contain numerous lymphatic capillaries that absorb this fluid from spaces between tissue cells. The lymphatic capillaries are blind-ended vascular channels lined by overlapping endothelial cells without the tight intercellular junctions or basement membrane that are typical of blood vessels. These distal lymphatic capillaries permit free uptake of interstitial fluid, and the overlapping arrangement of the endothelial cells and one-way valves within their lumens prevents backflow of the fluid. The absorbed fluid, called lymph once it is within the lymphatic vasculature, is pumped into convergent, ever larger lymphatic vessels by the contraction of perilymphatic smooth muscle cells and the pressure exerted by movement of the musculoskeletal tissues. These vessels merge into afferent lymphatics that drain into lymph nodes, and the lymph drains out of the nodes through efferent lymphatics. Because lymph nodes are connected in series by lymphatics, an efferent lymphatic exiting one node may serve as the afferent vessel for another. The efferent lymph vessel at the end of a lymph node chain joins other lymph vessels, eventually culminating in a large lymphatic vessel called the thoracic duct. Lymph from the thoracic duct is emptied into the superior vena cava, thus returning the fluid to the blood stream. Lymphatics from the right upper trunk, right arm, and right side of the head drain into the right lymphatic duct, which also drains into the superior vena cava. About 2 liters of lymph are normally returned to the circulation each day, and disruption of the lymphatic system may lead to rapid tissue swelling.

image

FIGURE 2–11 The lymphatic system.

The major lymphatic vessels, which drain into the inferior vena cava (and superior vena cava, not shown), and collections of lymph nodes are illustrated. Antigens are captured from a site of infection and the draining lymph node to which these antigens are transported and where the immune response is initiated.

  Page 30 

The lymphatic system collects microbial antigens from their portals of entry and delivers them to lymph nodes, where they can stimulate adaptive immune responses. Microbes enter the body most often through the skin and the gastrointestinal and respiratory tracts. All these tissues are lined by epithelia that contain dendritic cells, and all are drained by lymphatic vessels. The dendritic cells capture some microbial antigens and enter lymphatic vessels. Other microbes and soluble antigens enter the lymphatics independently of dendritic cells. In addition, soluble inflammatory mediators, such as chemokines, produced at sites of infection enter the lymphatics. The lymph nodes are interposed along lymphatic vessels and act as filters that sample the soluble and dendritic cell–associated antigens in the lymph before it reaches the blood and permit the antigens to be seen by the adaptive immune system.

Lymph Nodes

Lymph nodes are encapsulated, vascularized secondary lymphoid organs with anatomic features that favor the initiation of adaptive immune responses to antigens carried from tissues by lymphatics (Fig. 2-12). Lymph nodes are situated along lymphatic channels throughout the body and therefore have access to antigens encountered at epithelia and originating in interstitial fluid in most tissues. A lymph node is surrounded by a fibrous capsule, beneath which is a sinus system lined by reticular cells, cross-bridged by fibrils of collagen and other extracellular matrix proteins and filled with lymph, macrophages, dendritic cells, and other cell types. Afferent lymphatics empty into the subcapsular (marginal) sinus, and lymph may drain from there directly into the connected medullary sinus and then out of the lymph node through the efferent lymphatics. Beneath the inner floor of the subcapsular sinus is the lymphocyte-rich cortex. The outer cortex contains aggregates of cells called follicles. Some follicles contain central areas called germinal centers, which stain lightly with commonly used histologic stains. Follicles without germinal centers are called primary follicles, and those with germinal centers are secondary follicles. The cortex around the follicles is called the parafollicular cortex or paracortex and is organized into cords, which are regions with a complex microanatomy of matrix proteins, fibers, lymphocytes, dendritic cells, and mononuclear phagocytes.

image

FIGURE 2–12 Morphology of a lymph node.

A, Schematic diagram of a lymph node illustrating the T cell–rich and B cell–rich zones and the routes of entry of lymphocytes and antigen (shown captured by a dendritic cell). B, Light micrograph of a lymph node illustrating the T cell and B cell zones.

(Courtesy of Dr. James Gulizia, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts.)

Anatomic Organization of B and T Lymphocytes

B and T lymphocytes are sequestered in distinct regions of the cortex of lymph nodes, each region with its own unique architecture of reticular fibers and stromal cells (Figs. 2-13 and 2-14). Follicles are the B cell zones. They are located in the lymph node cortex and are organized around FDCs, which have processes that interdigitate to form a dense reticular network. Primary follicles contain mostly mature, naive B lymphocytes. Germinal centers develop in response to antigenic stimulation. They are sites of remarkable B cell proliferation, selection of B cells producing high-affinity antibodies, and generation of memory B cells and long-lived plasma cells. The T lymphocytes are located mainly beneath and more central to the follicles, in the paracortical cords. These T cell–rich zones contain a network of fibroblastic reticular cells (FRCs), which are arranged to form the outer layer of tube-like structures called FRC conduits. The conduits range in diameter from 0.2 to 3 µm and contain organized arrays of extracellular matrix molecules, including innermost parallel bundles of collagen fibers embedded in a meshwork of fibrillin microfibers, all tightly surrounded by a basement membrane produced by a continuous sleeve of FRCs. These conduits begin at the subcapsular sinus and extend to both medullary sinus lymphatic vessels and cortical blood vessels, called high endothelial venules (HEVs). Naive T cells enter the T cell zones through the HEVs, as described in detail in Chapter 3. T cells are densely packed around the conduits in the lymph node cortex. Most (~70%) of the cortical T cells are CD4+ helper T cells, intermingled with relatively sparse CD8+ cells. These proportions can change dramatically during the course of an infection. For example, during a viral infection, there may be a marked increase in CD8+ T cells. Dendritic cells are also concentrated in the paracortex of the lymph nodes, many of which are closely associated with the FRC conduits.

image image

FIGURE 2–13 Segregation of B cells and T cells in a lymph node.

A, The schematic diagram illustrates the path by which naive T and B lymphocytes migrate to different areas of a lymph node. The lymphocytes enter through an artery and reach a high endothelial venule, shown in cross section, from where naive lymphocytes are drawn to different areas of the node by chemokines that are produced in these areas and bind selectively to either cell type. Also shown is the migration of dendritic cells, which pick up antigens from the sites of antigen entry, enter through afferent lymphatic vessels, and migrate to the T cell–rich areas of the node. B, In this section of a lymph node, the B lymphocytes, located in the follicles, are stained green; the T cells, in the parafollicular cortex, are red. The method used to stain these cells is called immunofluorescence (see Appendix IV for details).

(Courtesy of Drs. Kathryn Pape and Jennifer Walter, University of Minnesota School of Medicine, Minneapolis.)

The anatomic segregation of T and B cells is also seen in the spleen (see Fig. 2-15).

image image image

FIGURE 2–14 Microanatomy of the lymph node cortex.

A, Schematic of the microanatomy of a lymph node depicting the route of lymph drainage from the subcapsular sinus, through fibroreticular cell conduits, to the perivenular channel around the high endothelial venule (HEV). B, Transmission electron micrograph of an FRC conduit surrounded by fibroblast reticular cells (arrowheads) and adjacent lymphocytes (L).

(From Gretz JE, CC Norbury, AO Anderson, AEI Proudfoot, and S Shaw. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. The Journal of Experimental Medicine 192:1425-1439, 2000.)

C, Immunofluorescent stain of an FRC conduit formed of the basement membrane protein laminin (red) and collagen fibrils (green).

(From Sixt M, K Nobuo, M Selg, T Samson, G Roos, DP Reinhardt, R Pabst, M Lutz, and L Sorokin. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19-29, 2006. Copyright ©2005 by Elsevier Inc.)

  Page 31 

The anatomic segregation of B and T lymphocytes in distinct areas of the node is dependent on cytokines that are secreted by lymph node stromal cells in each area and that direct the migration of the lymphocytes (see Fig. 2-13). Naive T and B lymphocytes are delivered to a node through an artery and leave the circulation and enter the stroma of the node through the HEVs, which are located in the center of the cortical cords. The type of cytokines that determine where B and T cells reside in the node are called chemokines (chemoattractant cytokines), which bind to chemokine receptors on the lymphocytes. Chemokines include a large family of 8- to 10-kD cytokines that are involved in a wide variety of cell motility functions in development, maintenance of tissue architecture, and immune and inflammatory responses. We will discuss the general properties of chemokines and their receptors in Chapter 3. Naive T cells express a receptor called CCR7 that binds the chemokines CCL19 and CCL21 produced by stromal cells in the T cell zones of the lymph node. These chemokines attract naive T cells to move from the blood, through the HEVs, into the T cell zone. Dendritic cells that drain into the node through lymphatics also express CCR7, and this is why they migrate from the subcapsular sinus to the same area of the node as do naive T cells (see Chapter 6). Naive B cells express another chemokine receptor, CXCR5, that recognizes a chemokine, CXCL13, produced only in follicles by FDCs. Thus, B cells are attracted into the follicles, which are the B cell zones of lymph nodes. Another cytokine (which is not a chemokine) called lymphotoxin plays a role in stimulating CXCL13 production, especially in the follicles. The functions of chemokines and other cytokines in regulating where lymphocytes are located in lymphoid organs and in the formation of these organs have been established by numerous studies in mice. For example, CXCR5 knockout mice lack B cell–containing follicles in lymph nodes and spleen. Similarly, CCR7 knockout mice lack T cell zones.

  Page 32 

The development of lymph nodes as well as of other peripheral lymphoid organs requires the coordinated actions of several cytokines, chemokines, transcription factors, and lymphoid tissue inducer cells. During fetal life, lymphoid tissue inducer cells, which are cells of hematopoietic origin with phenotypic features of both lymphocytes and NK cells, stimulate the development of lymph nodes and other secondary lymphoid organs. This function is mediated by various proteins expressed by the inducer cells, the most thoroughly studied being the cytokines lymphotoxin-α (LTα) and lymphotoxin-β (LTβ). Knockout mice lacking either of these cytokines do not develop lymph nodes or secondary lymphoid organs in the gut. Splenic white pulp development is also disorganized in these mice. The LTβ produced by the inducer cells acts on stromal cells in different locations of a developing secondary lymphoid organ, and these stromal cells are activated to produce the chemokines CXCL13 or CCL19 and CCL21. In areas where CXCL13 is induced, circulating B cells are recruited into nascent B cell follicles; and in the areas where CCL19 and CCL21 are induced, T cells and dendritic cells are recruited to form T cell zones. There are several other proteins expressed by lymphoid tissue inducer cells that are required for their function, including transcription factors, but their roles in lymphoid organogenesis are not well defined.

The anatomic segregation of T and B cells ensures that each lymphocyte population is in close contact with the appropriate APCs, that is, T cells with dendritic cells and B cells with FDCs. Furthermore, because of this precise segregation, B and T lymphocyte populations are kept apart until it is time for them to interact in a functional way. As we will see in Chapter 11, after stimulation by antigens, T and B cells lose their anatomic constraints and begin to migrate toward one another. Activated T cells may either migrate toward follicles to help B cells or exit the node and enter the circulation, whereas activated B cells migrate into germinal centers and, after differentiation into plasma cells, may home to the bone marrow.

  Page 33 

Antigen Transport Through Lymph Nodes

Lymph-borne substances that enter the subcapsular sinus of the lymph node are sorted by molecular size and delivered to different cell types to initiate different types of immune responses. The floor of the subcapsular sinus is constructed in a way that permits cells in the sinus to contact or migrate into the underlying cortex but does not allow movement of soluble molecules in the lymph to freely pass into the cortex. Viruses and other high-molecular-weight antigens are taken up by sinus macrophages and presented to cortical B lymphocytes just beneath the cortical sinus. This is the first step in antibody responses to these antigens. Low-molecular-weight soluble antigens are transported out of the sinus through the FRC conduits and passed to resident cortical dendritic cells located adjacent to the conduits. The resident dendritic cells extend processes between the cells lining the conduits and into the lumen and capture and pinocytose the soluble antigens inside the conduits. The contribution of this pathway of antigen delivery may be important for initial T cell immune responses to some microbial antigens, but larger and sustained responses require delivery of antigens to the node by tissue dendritic cells, as discussed in Chapter 6. In addition to antigens, there is evidence that soluble inflammatory mediators, such as chemokines and other cytokines, are transported in the lymph that flows through the conduits; some of these may act on the penetrating dendritic cells, and others may be delivered to HEVs into which the conduits drain. This is a possible way in which tissue inflammation can be sensed in the lymph node and thereby influence recruitment and activation of lymphocytes in the node.

Spleen

The spleen is a highly vascularized organ whose major functions are to remove aging and damaged blood cells and particles (such as immune complexes and opsonized microbes) from the circulation and to initiate adaptive immune responses to blood-borne antigens. The spleen weighs about 150 g in adults and is located in the left upper quadrant of the abdomen. The splenic parenchyma is anatomically and functionally divided into the red pulp, composed mainly of blood-filled vascular sinusoids, and the lymphocyte-rich white pulp. Blood enters the spleen through a single splenic artery, which pierces the capsule at the hilum and divides into progressively smaller branches that remain surrounded by protective and supporting fibrous trabeculae (Fig. 2-15). Some of the arteriolar branches of the splenic artery end in extensive vascular sinusoids, which form the red pulp, lined by macrophages and filled with large numbers of erythrocytes. The sinusoids end in venules that drain into the splenic vein, which carries blood out of the spleen and into the portal circulation. The red pulp macrophages serve as an important filter for the blood, removing microbes, damaged cells, and antibody-coated (opsonized) cells and microbes. Individuals lacking a spleen are highly susceptible to infections with encapsulated bacteria such as pneumococci and meningococci. This may be because such organisms are normally cleared by opsonization and phagocytosis, and this function is defective in the absence of the spleen.

image

FIGURE 2–15 Morphology of the spleen.

A, Schematic diagram of the spleen illustrating T cell and B cell zones, which make up the white pulp. B, Photomicrograph of a section of human spleen showing a trabecular artery with adjacent periarteriolar lymphoid sheath and a lymphoid follicle with a germinal center. Surrounding these areas is the red pulp, rich in vascular sinusoids. C, Immunohistochemical demonstration of T cell and B cell zones in the spleen, shown in a cross section of the region around an arteriole. T cells in the periarteriolar lymphoid sheath are stained red, and B cells in the follicle are stained green.

(Courtesy of Drs. Kathryn Pape and Jennifer Walter, University of Minnesota School of Medicine, Minneapolis.)

The function of the white pulp is to promote adaptive immune responses to blood-borne antigens. The white pulp consists of many collections of densely packed lymphocytes, which appear as white nodules against the background of the red pulp. The white pulp is organized around central arteries, which are branches of the splenic artery distinct from the branches that form the vascular sinusoids. Several smaller branches of each central artery pass through the lymphocyte-rich area and drain into a marginal sinus. A region of specialized cells surrounding the marginal sinus, called the marginal zone, forms the boundary between the red and white pulp. The architecture of the white pulp is analogous to the organization of lymph nodes, with segregated T cell and B cell zones. In the mouse spleen, the central arteries are surrounded by cuffs of lymphocytes, most of which are T cells. Because of their anatomic location, morphologists call these T cell zones periarteriolar lymphoid sheaths. B cell–rich follicles occupy the space between the marginal sinus and the periarteriolar sheath. As in lymph nodes, the T cell areas in the spleen contain a network of complex conduits composed of matrix proteins lined by FRC-like cells, although there are ultrastructural differences between the conduits in nodes and spleen. The marginal zone just outside the marginal sinus is a distinct region populated by B cells and specialized macrophages. The B cells in the marginal zone, known as marginal zone B cells, are functionally distinct from follicular B cells and have a limited repertoire of antigen specificities. The architecture of the white pulp is more complex in humans than in mice, with both inner and outer marginal zones and a perifollicular zone. Antigens in the blood are delivered into the marginal sinus by circulating dendritic cells or are sampled by the macrophages in the marginal zone. The anatomic arrangements of the APCs, B cells, and T cells in the splenic white pulp promote the interactions required for the efficient development of humoral immune responses, as will be discussed in Chapter 11. The segregation of T lymphocytes in the periarteriolar lymphoid sheaths and B cells in follicles and marginal zones is a highly regulated process, dependent on the production of different cytokines and chemokines by the stromal cells in these different areas, analogous to the case for lymph nodes. The chemokine CXCL13 and its receptor CXCR5 are required for B cell migration into the follicles, and CCL19 and CCL21 and their receptor CCR7 are required for naive T cell migration into the periarteriolar sheath. The production of these chemokines by nonlymphoid stromal cells is stimulated by the cytokine lymphotoxin.

  Page 34 

Regional Immune Systems

Each major epithelial barrier of the body, including the skin, gastrointestinal mucosa, and bronchial mucosa, has its own system of lymph nodes, nonencapsulated lymphoid structures, and diffusely distributed immune cells, which work in coordinated ways to provide specialized immune responses against the pathogens that enter at those barriers. The skin-associated immune system has evolved to respond to a wide variety of environmental microbes. The components of the immune systems associated with the gastrointestinal and bronchial mucosa are called the mucosa-associated lymphoid tissue (MALT) and are involved in immune responses to ingested and inhaled antigens and microbes. The skin and MALT contain a major proportion of the cells of the innate and adaptive immune systems. We will discuss the special features of these regional immune systems in Chapter 13.

Summary

The anatomic organization of the cells and tissues of the immune system is of critical importance for the generation of effective innate and adaptive immune responses. This organization permits the rapid delivery of innate effector cells, including neutrophils and monocytes, to sites of infection and permits a small number of lymphocytes specific for any one antigen to locate and respond effectively to that antigen regardless of where in the body the antigen is introduced.
The cells that perform the majority of effector functions of innate and adaptive immunity are phagocytes (including neutrophils and macrophages), APCs (including macrophages and dendritic cells), and lymphocytes.
Neutrophils, the most abundant blood leukocyte with a distinctive multilobed segmented nucleus and abundant cytoplasmic lysosomal granules, are rapidly recruited to sites of infection and tissue injury, where they perform phagocytic functions.
Monocytes are the circulating precursors of tissue macrophages. All tissues contain resident macrophages, which are phagocytic cells that ingest and kill microbes and dead host cells and secrete cytokines and chemokines that promote the recruitment of leukocytes from the blood.
APCs function to display antigens for recognition by lymphocytes and to promote the activation of lymphocytes. APCs include dendritic cells, mononuclear phagocytes, and FDCs.
B and T lymphocytes express highly diverse and specific antigen receptors and are the cells responsible for the specificity and memory of adaptive immune responses. NK cells are a distinct class of lymphocytes that do not express highly diverse antigen receptors and whose functions are largely in innate immunity. Many surface molecules are differentially expressed on different subsets of lymphocytes as well as on other leukocytes, and these are named according to the CD nomenclature.
Both B and T lymphocytes arise from a common precursor in the bone marrow. B cell development proceeds in the bone marrow, whereas T cell precursors migrate to and mature in the thymus. After maturing, B and T cells leave the bone marrow and thymus, enter the circulation, and populate peripheral lymphoid organs.
Naive B and T cells are mature lymphocytes that have not been stimulated by antigen. When they encounter antigen, they differentiate into effector lymphocytes that have functions in protective immune responses. Effector B lymphocytes are antibody-secreting plasma cells. Effector T cells include cytokine-secreting CD4+ helper T cells and CD8+ CTLs.
  Page 35 
Some of the progeny of antigen-activated B and T lymphocytes differentiate into memory cells that survive for long periods in a quiescent state. These memory cells are responsible for the rapid and enhanced responses to subsequent exposures to antigen.
The organs of the immune system may be divided into the generative organs (bone marrow and thymus), where lymphocytes mature, and the peripheral organs (lymph nodes and spleen), where naive lymphocytes are activated by antigens.
Bone marrow contains the stem cells for all blood cells, including lymphocytes, and is the site of maturation of all of these cell types except T cells, which mature in the thymus.
Extracellular fluid (lymph) is constantly drained from tissues through lymphatics into lymph nodes and eventually into the blood. Microbial antigens are carried in soluble form and within dendritic cells in the lymph to lymph nodes, where they are recognized by lymphocytes.
Lymph nodes are encapsulated secondary lymphoid organs located throughout the body along lymphatics, where naive B and T cells respond to antigens that are collected by the lymph from peripheral tissues. The spleen is an encapsulated organ in the abdominal cavity where senescent or opsonized blood cells are removed from the circulation, and in which lymphocytes respond to blood-borne antigens. Both lymph nodes and the white pulp of the spleen are organized into B cell zones (the follicles) and T cell zones. The T cell areas are also the sites of residence of mature dendritic cells, which are APCs specialized for the activation of naive T cells. FDCs reside in the B cell areas and serve to activate B cells during humoral immune responses to protein antigens. The development of secondary lymphoid tissues depends on cytokines and lymph node inducer cells.

Suggested Readings

Cells of the Immune System

Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656-661.

Schluns KS, Lefrancois L. Cytokine control of memory T-cell development and survival. Nature Reviews Immunology. 2003;3:269-279.

Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29:848-862.

Tissues of the Immune System

Lane P, Kim M-Y, Withers D, Gaspal F, Bekiaris V, Desanti G, Khan M, McConnell F, Anderson G. Lymphoid tissue inducer cells in adaptive CD4 T cell dependent responses. Seminars in Immunology. 2008;20:159-163.

Mebius RE, Kraal G. Structure and function of the spleen. Nature Reviews Immunology. 2005;5:606-616.

Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nature Reviews Immunology. 2009;9:618-629.

Ruddle NH, Akirav EM. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. Journal of Immunology. 2009;183:2205-2212.

Von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nature Reviews Immunology. 2003;3:867-878.

  Page 36