CHAPTER 6 Major Histocompatibility Complex Molecules and Antigen Presentation to T Lymphocytes
The principal functions of T lymphocytes are to eradicate infections by intracellular microbes and to activate other cells, such as macrophages and B lymphocytes. To serve these functions, T cells have to overcome several challenges.
Thus, antigen capture and display to T cells is a specialized and finely orchestrated process with many important functional implications. Elucidation of the cell biology and molecular basis of this complex process has been a fascinating accomplishment, which encompasses fundamental biology as well as fine structural detail. In this chapter, we will describe how antigens are captured and displayed to T cells. In Chapter 7, we describe the antigen receptors of T cells, and in Chapters 9 and 10, we discuss the activation and effector functions of T lymphocytes.
Our current understanding of T cell antigen recognition is the culmination of a vast amount of research that began with studies of the nature of antigens that stimulate cell-mediated immunity. The early studies showed that the physicochemical forms of antigens that are recognized by T cells are different from those recognized by B lymphocytes and antibodies, and this knowledge led to the discovery of the role of the MHC in T cell antigen recognition. Several features of antigen recognition are unique to T lymphocytes (Table 6-1).
TABLE 6–1 Features of Antigens Recognized by T Lymphocytes
Features of Antigens Recognized by T Cells | Explanation |
---|---|
Most T cells recognize peptides and no other molecules. | Only peptides bind to MHC molecules. |
T cells recognize linear peptides and not conformational determinants of protein antigens. | Linear peptides bind to clefts of MHC molecules, and protein conformation is lost during the generation of these peptides. |
T cells recognize cell-associated and not soluble antigens. | T cell receptors recognize only MHC-like shapes, and MHC molecules are membrane proteins that display stably bound peptides on cell surfaces. |
CD4+ and CD8+ T cells preferentially recognize antigens sampled from the extracellular and cytosolic pools, respectively. | Pathways of assembly of MHC molecules ensure that class II molecules display peptides that are derived from extracellular proteins and taken up into vesicles in APCs and that class I molecules present peptides from cytosolic proteins; CD4 and CD8 bind to nonpolymorphic regions of class II and class I MHC molecules, respectively. |
Most T lymphocytes recognize only short linear peptides, and in fact, they are specific for the amino acid sequences of peptides, whereas B cells can recognize peptides, proteins, nucleic acids, carbohydrates, lipids, and small chemicals. As a result, T cell–mediated immune responses are usually induced by foreign protein antigens (the natural source of foreign peptides), whereas humoral immune responses are induced by protein and nonprotein antigens. Some T cells are specific for small chemical haptens such as dinitrophenol, urushiol of poison ivy, and β lactams of penicillin antibiotics. In these situations, it is likely that the haptens bind to self proteins and that hapten-conjugated peptides are recognized by T cells. The peptide specificity of T cells is true for CD4+ and CD8+ cells; as we shall discuss at the end of this chapter, there are some small populations of T cells that are capable of recognizing nonprotein antigens.
The reason that T cells recognize only peptides is that the antigen receptors of CD4+ and CD8+ T cells are specific for antigens that are displayed by MHC molecules, and these molecules can bind peptides but no other chemical structures (Fig. 6-1). Thus, every T cell is specific for a combination of amino acid residues of a peptide antigen plus portions of the MHC molecule. As we shall discuss later, MHC molecules are highly polymorphic, and variations in MHC molecules among individuals influence both peptide binding and T cell recognition. A single T cell can recognize a specific peptide displayed by only one of the large number of different MHC molecules that exist. This phenomenon is called MHC restriction, and we will describe its molecular basis later in the chapter.
FIGURE 6–1 A model for T cell recognition of a peptide-MHC complex.
This schematic illustration shows an MHC molecule binding and displaying a peptide and a T cell receptor recognizing two polymorphic residues of the MHC molecule and one residue of the peptide.
We start our discussion of antigen presentation by describing how APCs capture antigens and transport them to T cells.
The realization that various cells other than T cells are needed to present antigens to T lymphocytes came first from studies in which protein antigens that were known to elicit T cell responses were labeled and injected into mice, to ask what cells bound (and, by implication, recognized) these antigens. The surprising result was that the injected antigens were associated mainly with non-T cells. This type of experiment was quickly followed by studies showing that protein antigens that were physically associated with macrophages were much more immunogenic, on a molar basis, than the same antigens injected into mice in soluble form. In these early experiments, the macrophage populations studied likely included dendritic cells, since, as discussed below, naive T cells are best activated by dendritic cells. Subsequent cell culture experiments showed that purified CD4+ T cells could not respond to protein antigens, but they responded very well if non-T cells such as dendritic cells or macrophages were added to the cultures. These results led to the concept that a critical step in the induction of a T cell response is the presentation of the antigen to T lymphocytes by other cells, and the name antigen-presenting cells was born. The first APCs identified were macrophages, and the responding T cells were CD4+ helper cells. It soon became clear that several cell populations, described later, can function as APCs in different situations. By convention, APC is still the term used to refer to specialized cells that display antigens to CD4+ T lymphocytes; as we shall see later in the chapter, all nucleated cells can display protein antigens to CD8+ T lymphocytes, and they are not called APCs.
We begin with a discussion of some of the general properties of APCs for CD4+ T lymphocytes.
FIGURE 6–2 Functions of different antigen-presenting cells.
The three major types of APCs for CD4+ T cells function to display antigens at different stages and in different types of immune responses. Note that effector T cells activate macrophages and B lymphocytes by production of cytokines and by expressing surface molecules; these will be described in later chapters.
The primary responses of naive CD4+ T cells are initiated in the peripheral lymphoid organs, to which protein antigens are transported after being collected from their portal of entry (Fig. 6-3). The common routes through which foreign antigens, such as microbes, enter a host are the skin and the epithelia of the gastrointestinal and respiratory systems. In addition, microbial antigens may be produced in any tissue that has been colonized or infected by a microbe. The skin, mucosal epithelia, and parenchymal organs contain numerous lymphatic capillaries that drain lymph from these sites and into the regional lymph nodes. Some antigens are transported in the lymph by APCs, primarily dendritic cells, that capture the antigen and enter lymphatic vessels, and other antigens may be in a free form. Thus, the lymph contains a sampling of all the soluble and cell-associated antigens present in tissues. The antigens become concentrated in lymph nodes, which are interposed along lymphatic vessels and act as filters that sample the lymph before it reaches the blood (see Chapter 2). Antigens that enter the blood stream may be similarly sampled by the spleen.
FIGURE 6–3 Routes of antigen entry.
Microbial antigens commonly enter through the skin and gastrointestinal and respiratory tracts, where they are captured by dendritic cells and transported to regional lymph nodes. Antigens that enter the blood stream are captured by APCs in the spleen.
The cells that are designed to capture, transport, and present antigens to T cells are the dendritic cells. We next describe their major characteristics and their functions in initiating T cell responses.
Dendritic cells (DCs) are present in lymphoid organs, in the epithelia of the skin and gastrointestinal and respiratory tracts, and in the interstitium of most parenchymal organs. These cells (introduced in Chapter 2) are identified morphologically by their membranous or spine-like projections (Fig. 6-4). All DCs are thought to arise from bone marrow precursors, and most are related in lineage to mononuclear phagocytes (see Fig. 2-2). Several subsets of DCs have been identified that may be distinguished by the expression of various cell surface markers and may play different roles in immune responses. The two main types are called conventional DCs and plasmacytoid DCs (Table 6-3).
A, Light micrograph of cultured dendritic cells derived from bone marrow precursors. B, A scanning electron micrograph of a dendritic cell showing the extensive membrane projections. C, D, Dendritic cells in the skin, illustrated schematically (C) and in a section of the skin (D) stained with an antibody specific for Langerhans cells (which appear blue in this immunoenzyme stain). E, F, Dendritic cells in a lymph node, illustrated schematically (E) and in a section of a mouse lymph node (F) stained with fluorescently labeled antibodies against B cells in follicles (green) and dendritic cells in the T cell zone (red).
(A, B, and D courtesy of Dr. Y-J Liu, M.D. Anderson Cancer Center, Houston, Texas; F courtesy of Drs. Kathryn Pape and Jennifer Walter, University of Minnesota School of Medicine, Minneapolis.)
TABLE 6–3 The Major Subpopulations of Dendritic Cells
Feature | Conventional (Myeloid) Dendritic Cells | Plasmacytoid Dendritic Cells |
---|---|---|
Surface markers | CD11c high CD11b high |
CD11c low CD11b negative B220 high |
Growth factors for in vitro derivation | GM-CSF, Flt3-ligand | Flt3-ligand |
Expression of Toll-like receptors (TLRs) | TLRs 4, 5, 8 high | TLRs 7, 9 high |
Major cytokines produced | TNF, IL-6 | Type I interferons |
Postulated major functions | Induction of T cell responses against most antigens | Innate immunity and induction of T cell responses against viruses |
Other subsets of dendritic cells have been described on the basis of the expression of various surface markers (such as CD4, CD8, and CD11b) or migration from tissue sites (Langerhans-type dendritic cells from epithelia and interstitial dendritic cells from tissues). Note that all DCs express class II MHC molecules. Some authorities also refer to monocyte-derived dendritic cells, which can be generated from blood monocytes cultured with various cytokines and may develop in vivo during inflammatory reactions.
DCs that migrate from tissue sites to lymph nodes can also be characterized as immature or mature. Many DCs normally residing in lymphoid organs and in nonlymphoid tissues, including epithelia, in the absence of infection or inflammation, appear to be in an immature state, that is, able to capture antigens but unable to activate T cells. These DCs may function to present self antigens to self-reactive T cells and thereby cause inactivation or death of the T cells or generate regulatory T cells. These mechanisms are important for maintaining self-tolerance and preventing autoimmunity (see Chapter 14). As discussed below, DCs that have encountered microbes undergo maturation and function to present the antigens to T cells and to activate the T cells.
DCs that are resident in epithelia and tissues capture protein antigens and transport the antigens to draining lymph nodes (Fig. 6-5). Resting (immature) DCs express membrane receptors, such as C-type lectins, that bind microbes. DCs use these receptors to capture and endocytose microbes and their antigens and then process the ingested proteins into peptides capable of binding to MHC molecules. Apart from receptor-mediated endocytosis and phagocytosis, DCs can ingest antigens by micropinocytosis and macropinocytosis, processes that do not involve specific recognition receptors but capture whatever might be in the fluid phase in the vicinity of the DCs. At the same time, an innate immune response develops during which microbial products are recognized by Toll-like receptors and other microbial sensors in the DCs and other cells. The DCs are activated by these signals and by cytokines, such as tumor necrosis factor (TNF), produced in response to the microbes. The activated DCs (also called mature DCs) lose their adhesiveness for epithelia or tissues and migrate into lymph nodes. The DCs also begin to express a chemokine receptor called CCR7 that is specific for two chemokines, CCL19 and CCL21, that are produced in the T cell zones of lymph nodes. These chemokines attract the DCs bearing microbial antigens into the T cell zones of the regional lymph nodes. Naive T cells also express CCR7, and this is why naive T cells migrate to the same regions of lymph nodes where antigen-bearing DCs are concentrated (see Chapter 3). The colocalization of antigen-bearing DCs and naive T cells maximizes the chance of T cells with receptors for the antigen finding that antigen. Maturation also converts the DCs from cells whose function is to capture antigen into cells that are able to present antigens to naive T cells and to activate the lymphocytes. Mature DCs express high levels of MHC molecules with bound peptides as well as costimulators required for T cell activation. Thus, by the time these cells become resident in lymph nodes, they have developed into potent APCs with the ability to activate T lymphocytes. Naive T cells that recirculate through lymph nodes encounter these APCs, and the T cells that are specific for the displayed peptide-MHC complexes are activated. This is the initial step in the induction of T cell responses to protein antigens.
FIGURE 6–5 Role of dendritic cells in antigen capture and presentation.
Immature dendritic cells in the skin (Langerhans cells) or dermis (dermal DCs) capture antigens that enter through the epidermis and transport the antigens to regional lymph nodes. During this migration, the dendritic cells mature and become efficient APCs. The table summarizes some of the changes during dendritic cell maturation that are important in the functions of these cells.
Antigens may also be transported to lymphoid organs in soluble form. Resident DCs in the lymph nodes and spleen may capture lymph- and blood-borne antigens, respectively, and also be driven to mature by microbial products. When lymph enters a lymph node through an afferent lymphatic vessel, it drains into the subcapsular sinus, and some of the lymph enters fibroblast reticular cell conduits that originate from the sinus and traverse the cortex (see Chapter 2). Once in the conduits, low-molecular-weight antigens can be extracted by DCs whose processes interdigitate between the reticular cells. Other antigens in the subcapsular sinus are taken up by macrophages and DCs, which carry the antigens into the cortex. B cells in the node may also recognize and internalize soluble antigens. DCs, macrophages, and B cells that have taken up protein antigens can then process and present these antigens to naive T cells and to effector T cells that have been generated by previous antigen stimulation.
The collection and concentration of foreign antigens in lymph nodes are supplemented by two other anatomic adaptations that serve similar functions. First, the mucosal surfaces of the gastrointestinal and respiratory systems, in addition to being drained by lymphatic capillaries, contain specialized collections of secondary lymphoid tissue that can directly sample the luminal contents of these organs for the presence of antigenic material. The best characterized of these mucosal lymphoid organs are Peyer’s patches of the ileum and the pharyngeal tonsils (see Chapter 13). Second, the blood stream is monitored by APCs in the spleen for any antigens that reach the circulation. Such antigens may reach the blood either directly from the tissues or by way of the lymph from the thoracic duct.
Many studies done in vitro and in vivo have established that the induction of primary T cell–dependent immune responses to protein antigens requires the presence of DCs to capture and to present the antigens to the T cells. This was first shown for CD4+ T cell responses but is now known to be true for CD8+ T cells as well.
Several properties of DCs make them the most efficient APCs for initiation of primary T cell responses.
DCs can ingest infected cells and present antigens from these cells to CD8+ T lymphocytes. DCs are the best APCs to induce the primary responses of CD8+ T cells, but this poses a special problem because the antigens these lymphocytes recognize may be produced in any cell type infected by a virus, not necessarily DCs. Some specialized DCs have the ability to ingest virus-infected cells or cellular fragments and present antigens from these cells to CD8+ T lymphocytes. This process is called cross-presentation, or cross-priming, and is described later in the chapter.
Although DCs have a critical role in initiating primary T cell responses, other cell types are also important APCs in different situations (see Fig. 6-2 and Table 6-2).
The discovery of the fundamental role of the MHC in antigen recognition by CD4+ and CD8+ T cells has revolutionized the field of immunology and paved the way for our current understanding of the activation and functions of lymphocytes.
The MHC was discovered from studies of tissue transplantation, well before the structure and function of MHC molecules were elucidated. It was known that tissues, such as skin, exchanged between nonidentical animals are rejected, whereas the same grafts between identical twins are accepted. This result showed that inherited genes must be involved in the process of tissue rejection. In the 1940s, to analyze the genetic basis of graft rejection, George Snell and colleagues produced inbred mouse strains by repetitive mating of siblings. Inbred mice are homozygous at every genetic locus (i.e., they express only one allele of every gene, even the polymorphic genes), and every mouse of an inbred strain is genetically identical (syngeneic) to every other mouse of the same strain (i.e., they all express the same alleles). Different strains may express different alleles and are said to be allogeneic to one another. By breeding congenic strains of mice that rejected grafts from other strains but were identical for all other genes, these investigators showed that a single genetic region is primarily responsible for rapid rejection of tissue grafts, and this region was called the major histocompatibility locus (histo, tissue). The particular locus that was identified in mice by Snell’s group was linked to a gene on chromosome 17 encoding a blood group antigen called antigen II, and therefore this region was named histocompatibility-2, or simply H-2. Initially, this locus was thought to contain a single gene that controlled tissue compatibility. However, occasional recombination events occurred within the H-2 locus during interbreeding of different strains, indicating that it actually contained several different but closely linked genes, many of which were involved in graft rejection. The genetic region that controlled graft rejection and contained several linked genes was named the major histocompatibility complex. Although not known at the time of Snell’s experiments, transplant rejection is in large part a T cell–mediated process (see Chapter 16), and therefore it is not surprising that there is a relationship between MHC genes, which encode the peptide-binding MHC molecules that T cells recognize, and graft rejection.
The human MHC was discovered by searching for cell surface molecules in one individual that would be recognized as foreign by another individual. This task became feasible when Jean Dausset, Jan van Rood, and their colleagues discovered that individuals who had received multiple blood transfusions and patients who had received kidney transplants contained antibodies that recognized cells from the blood or kidney donors and multiparous women had circulating antibodies that recognized paternal cells. The proteins recognized by these antibodies were called human leukocyte antigens (HLA) (leukocyte because the antibodies were tested by binding to the leukocytes of other individuals, and antigens because the molecules were recognized by antibodies). Subsequent analyses have shown that as in mice, the inheritance of particular HLA alleles is a major determinant of graft acceptance or rejection (see Chapter 16). Biochemical studies gave the satisfying result that the mouse H-2 proteins and the HLA proteins had essentially identical structures. From these results came the conclusion that genes that determine the fate of grafted tissues are present in all mammalian species and are homologous to the H-2 genes first identified in mice; these are called MHC genes. Other polymorphic genes that contribute to graft rejection to a lesser degree are called minor histocompatibility genes; we will return to these in Chapter 16, when we discuss transplantation immunology.
For almost 20 years after the MHC was discovered, its only documented role was in graft rejection. This was a puzzle to immunologists because transplantation is not a natural phenomenon, and there was no reason that a set of genes should be preserved through evolution if the only function of the genes was to control the rejection of foreign tissue grafts. In the 1960s and 1970s, it was discovered that MHC genes are of fundamental importance for all immune responses to protein antigens. Baruj Benacerraf, Hugh McDevitt, and their colleagues found that inbred strains of guinea pigs and mice differed in their ability to make antibodies against some simple synthetic polypeptides, and responsiveness was inherited as a dominant mendelian trait. The relevant genes were called immune response (Ir) genes, and they were all found to map to the MHC. We now know that Ir genes are, in fact, MHC genes that encode MHC molecules that differ in their ability to bind and display peptides derived from various protein antigens. Responder strains, which can mount immune responses to a particular polypeptide antigen, inherit MHC alleles whose products can bind peptides derived from these antigens, forming peptide-MHC complexes that can be recognized by helper T cells. These T cells then help B cells to produce antibodies. Nonresponder strains express MHC molecules that are not capable of binding peptides derived from the polypeptide antigen, and therefore these strains cannot generate helper T cells or antibodies specific for the antigen. It was also later found that many autoimmune diseases were associated with the inheritance of particular MHC alleles, firmly placing these genes at the center of the mechanisms that control immune responses. Such studies provided the impetus for more detailed analyses of MHC genes and proteins.
The formal proof that the MHC is involved in antigen recognition by T cells came from the experimental demonstration of MHC restriction by Rolf Zinkernagel and Peter Doherty. In their classic study, reported in 1974, these investigators examined the recognition of virus-infected cells by virus-specific CTLs in inbred mice. If a mouse is infected with a virus, CD8+ CTLs specific for the virus develop in the animal. These CTLs recognize and kill virus-infected cells only if the infected cells express alleles of MHC molecules that are expressed in the animal in which the CTLs were generated (Fig. 6-6). By use of MHC congenic strains of mice (mice that were identical at every genetic locus except the MHC), it was shown that the CTLs and the infected target cell must be derived from mice that share a class I MHC allele. Thus, the recognition of antigens by CD8+ CTLs is restricted by self class I MHC alleles. Subsequent experiments demonstrated that responses of CD4+ helper T lymphocytes to antigens are self class II MHC restricted.
FIGURE 6–6 Experimental demonstration of the phenomenon of MHC restriction of T lymphocytes.
Virus-specific cytotoxic T lymphocytes (CTLs) generated from virus-infected strain A mice kill only syngeneic (strain A) target cells infected with that virus. The CTLs do not kill uninfected strain A targets (which express self peptides but not viral peptides) or infected strain B targets (which express different MHC alleles than does strain A). By use of congenic mouse strains that differ only at class I MHC loci, it has been proved that recognition of antigen by CD8+ CTLs is self class I MHC restricted.
We continue our discussion of the MHC by describing the properties of the genes and then the proteins, and we conclude by describing how these proteins bind and display foreign antigens.
The MHC locus contains two types of polymorphic MHC genes, the class I and class II MHC genes, which encode two groups of structurally distinct but homologous proteins, and other nonpolymorphic genes whose products are involved in antigen presentation (Fig. 6-7). Class I MHC molecules display peptides to and are recognized by CD8+ T cells, and class II MHC molecules display peptides to CD4+ T cells; each of these T cell types serves different functions in protection against microbes.
FIGURE 6–7 Schematic maps of human and mouse MHC loci.
The basic organization of the genes in the MHC locus is similar in humans and mice. Sizes of genes and intervening DNA segments are not shown to scale. Class II loci are shown as single blocks, but each locus consists of several genes. Class III MHC locus refers to genes that encode molecules other than peptide-display molecules; this term is not used commonly.
MHC genes are codominantly expressed in each individual. In other words, for a given MHC gene, each individual expresses the alleles that are inherited from each of the two parents. For the individual, this maximizes the number of MHC molecules available to bind peptides for presentation to T cells.
Class I and class II MHC genes are the most polymorphic genes present in the genome. The studies of the mouse MHC were accomplished with a limited number of strains. Although it was appreciated that mouse MHC genes were polymorphic, only about 20 alleles of each MHC gene were identified in the available inbred strains of mice. The human serologic studies were conducted on outbred human populations. A remarkable feature to emerge from the studies of the human MHC genes is the unprecedented and unanticipated extent of their polymorphism. The total number of HLA alleles in the population is estimated to be about 3500, with more than 250 alleles for the HLA-B locus alone. Molecular sequencing has shown that a single serologically defined HLA allele may actually consist of multiple variants that differ slightly. Therefore, the polymorphism is even greater than that predicted from serologic studies. As we shall discuss later in the chapter, the polymorphic residues of MHC molecules determine the specificity of peptide binding and T cell antigen recognition, which has led to the question of why MHC genes are polymorphic. The presence of multiple MHC alleles in the population will ensure that at least some individuals in a population will be able to recognize protein antigens produced by virtually any microbe, and thus reduce the likelihood that a single pathogen can evade host defenses in all the individuals in a given species.
In humans, the MHC is located on the short arm of chromosome 6 and occupies a large segment of DNA, extending about 3500 kilobases (kb). (For comparison, a large human gene may extend up to 50 to 100 kb, and the size of the entire genome of the bacterium Escherichia coli is approximately 4500 kb.) In classical genetic terms, the MHC locus extends about 4 centimorgans, meaning that crossovers within the MHC occur with a frequency of about 4% at each meiosis. A molecular map of the human MHC is shown in Figure 6-8.
FIGURE 6–8 Map of the human MHC.
The genes located within the human MHC locus are illustrated. In addition to the class I and class II MHC genes, HLA-E, HLA-F, and HLA-G and the MIC genes encode class I–like molecules, many of which are recognized by NK cells; C4, C2, and factor B genes encode complement proteins; tapasin, DM, DO, TAP, and proteasome encode proteins involved in antigen processing; LTα, LTβ, and TNF encode cytokines. Many pseudogenes and genes whose roles in immune responses are not established are located in the HLA complex but are not shown to simplify the map.
The human class I HLA genes were first defined by serologic approaches (antibody binding). There are three class I MHC genes called HLA-A, HLA-B, and HLA-C, which encode three class I MHC molecules with the same names. Class II MHC genes were first identified by use of assays in which T cells from one individual would be activated by cells of another individual (called the mixed lymphocyte reaction; see Chapter 16).There are three class II HLA gene loci called HLA-DP, HLA-DQ, and HLA-DR. Each class II MHC molecule is composed of a heterodimer of α and β polypeptides, and the DP, DQ, and DR loci each contain separate genes designated A or B, encoding α and β chains, respectively. More recently, DNA sequencing methods have been used to more precisely define MHC genes and their differences among individuals. The nomenclature of the HLA locus takes into account the enormous polymorphism (variation among individuals) identified by serologic and molecular methods. Thus, based on modern molecular typing, individual alleles may be called HLA-A*0201, referring to the 01 subtype of HLA-A2, or HLA-DRB1*0401, referring to the 01 subtype of the DR4 allele in the B1 gene, and so on.
The mouse MHC, located on chromosome 17, occupies about 2000 kb of DNA, and the genes are organized in an order slightly different from the human MHC gene. One of the mouse class I genes (H-2K) is centromeric to the class II region, but the other class I genes are telomeric to the class II region. There are three mouse class I MHC genes called H-2K, H-2D, and H-2L, encoding three different class I MHC proteins, K, D, and L. These genes are homologous to the human HLA-A, B, and C genes. The MHC alleles of particular inbred strains of mice are designated by lowercase letters (e.g., a, b), named for the whole set of MHC genes of the mouse strain in which they were first identified. In the parlance of mouse geneticists, the allele of the H-2K gene in a strain with the k-type MHC is called Kk (pronounced K of k), whereas the allele of the H-2K gene in a strain with d-type MHC is called Kd (K of d). Similar terminology is used for H-2D and H-2L alleles. Mice have two class II MHC loci called I-A and I-E, which encode the I-A and I-E molecules, respectively. These are located in the A and E subregions of the Ir region of the MHC and were discovered to be the Ir genes discussed earlier. The mouse class II genes are homologous to human HLA-DP, DQ, and DR genes. The I-A allele found in the inbred mouse strain with the Kk and Dk alleles is called I-Ak (pronounced I A of k). Similar terminology is used for the I-E allele. As in humans, there are actually two different genes, designated A and B, in the I-A and I-E loci that encode the α and β chains of each class II MHC molecule.
The set of MHC alleles present on each chromosome is called an MHC haplotype. For instance, an HLA haplotype of an individual could be HLA-A2, HLA-B5, HLA-DR3, and so on. All heterozygous individuals, of course, have two HLA haplotypes. Inbred mice, being homozygous, have a single haplotype. Thus, the haplotype of an H-2d mouse is H-2Kd I-Ad I-Ed Dd Ld.
Because MHC molecules are required to present antigens to T lymphocytes, the expression of these proteins in a cell determines whether foreign (e.g., microbial) antigens in that cell will be recognized by T cells. There are several important features of the expression of MHC molecules that contribute to their role in protecting individuals from diverse microbial infections.
Class I molecules are constitutively expressed on virtually all nucleated cells, whereas class II molecules are expressed only on dendritic cells, B lymphocytes, macrophages, and a few other cell types. This pattern of MHC expression is linked to the functions of class I–restricted and class II–restricted T cells. The effector function of class I–restricted CD8+ CTLs is to kill cells infected with intracellular microbes, such as viruses, as well as tumors that express tumor antigens. The expression of class I MHC molecules on nucleated cells serves provides a display system for viral and tumor antigens. In contrast, class II–restricted CD4+ helper T lymphocytes have a set of functions that require recognizing antigen presented by a more limited number of cell types. In particular, naive CD4+ T cells need to recognize antigens that are captured and presented by dendritic cells in lymphoid organs. Differentiated CD4+ helper T lymphocytes function mainly to activate (or help) macrophages to eliminate extracellular microbes that have been phagocytosed and to activate B lymphocytes to make antibodies that also eliminate extracellular microbes. Class II molecules are expressed mainly on these cell types and provide a system for display of peptides derived from extracellular microbes and proteins.
The expression of MHC molecules is increased by cytokines produced during both innate and adaptive immune responses (Fig. 6-9). On most cell types, the interferons IFN-α, IFN-β, and IFN-γ increase the level of expression of class I molecules. The interferons are cytokines produced during the early innate immune response to many viruses (see Chapter 4). Thus, innate immune responses to viruses increase the expression of the MHC molecules that display viral antigens to virus-specific T cells. This is one of the mechanisms by which innate immunity stimulates adaptive immune responses.
FIGURE 6–9 Enhancement of class II MHC expression by IFN-γ.
IFN-γ, produced by NK cells and other cell types during innate immune reactions to microbes or by T cells during adaptive immune reactions, stimulates class II MHC expression on APCs and thus enhances the activation of CD4+ T cells. IFN-γ and type I interferons have a similar effect on the expression of class I MHC molecules and the activation of CD8+ T cells.
The expression of class II molecules is also regulated by cytokines and other signals in different cells. IFN-γ is the principal cytokine involved in stimulating expression of class II molecules in APCs such as dendritic cells and macrophages (see Fig. 6-9). IFN-γ may be produced by NK cells during innate immune reactions and by antigen-activated T cells during adaptive immune reactions. The ability of IFN-γ to increase class II MHC expression earlier than APCs is an amplification mechanism in adaptive immunity. As mentioned earlier, the expression of class II molecules also increases in response to signals from Toll-like receptors responding to microbial components, thus promoting the display of microbial antigens. B lymphocytes constitutively express class II molecules and can increase expression in response to antigen recognition and cytokines produced by helper T cells, thus enhancing antigen presentation to helper cells (see Chapter 11). IFN-γ can also increase the expression of MHC molecules on vascular endothelial cells and other nonimmune cell types; the role of these cells in antigen presentation to T lymphocytes is unclear. Some cells, such as neurons, never appear to express class II molecules. Activated human but not mouse T cells express class II molecules after activation; however, no cytokine has been identified in this response, and its functional significance is unknown.
The rate of transcription is the major determinant of the level of MHC molecule synthesis and expression on the cell surface. Cytokines enhance MHC expression by stimulating the transcription of class I and class II genes in a wide variety of cell types. These effects are mediated by the binding of cytokine-activated transcription factors to DNA sequences in the promoter regions of MHC genes. Several transcription factors may be assembled and bind a protein called the class II transcription activator (CIITA), and the entire complex binds to the class II promoter and promotes efficient transcription. By keeping the complex of transcription factors together, CIITA functions as a master regulator of class II gene expression. CIITA is synthesized in response to IFN-γ, explaining how this cytokine increases expression of class II MHC molecules. Mutations in several of these transcription factors have been identified as the cause of human immunodeficiency diseases associated with defective expression of MHC molecules. The best studied of these disorders is the bare lymphocyte syndrome (see Chapter 20). Knockout mice lacking CIITA also show reduced or absent class II expression on dendritic cells and B lymphocytes and an inability of IFN-γ to induce class II on all cell types.
The expression of many of the proteins involved in antigen processing and presentation is coordinately regulated. For instance, IFN-γ increases the transcription not only of class I and class II genes but also of several genes whose products are required for class I MHC assembly and peptide display, such as genes encoding the TAP transporter and some of the subunits of proteasomes, discussed later in the chapter.
Biochemical studies of MHC molecules culminated in the solution of the crystal structures for the extracellular portions of human class I and class II molecules. Subsequently, many MHC molecules with bound peptides have been crystallized and analyzed in detail. This knowledge has been enormously informative and, because of it, we now understand how MHC molecules display peptides. In this section, we first summarize the functionally important biochemical features that are common to class I and class II MHC molecules. We then describe the structures of class I and class II proteins, pointing out their important similarities and differences (Table 6-4).
TABLE 6–4 Features of Class I and Class II MHC Molecules
Feature | Class I MHC | Class II MHC |
---|---|---|
Polypeptide chains | α (44-47 kD) β2- Microglobulin (12 kD) |
α and β |
Locations of polymorphic residues | α1 and α2 domains | α1 and β1 domains |
Binding site for T cell coreceptor | CD8 binds to α3 region | CD4 binds to β2 region |
Size of peptide-binding cleft | Accommodates peptides of 8-11 residues | Accommodates peptides of 10-30 residues or more |
Nomenclature | ||
Human | HLA-A, HLA-B, HLA-C | HLA-DR, HLA-DQ, HLA-DP |
Mouse | H-2K, H-2D, H-2L | I-A, I-E |
All MHC molecules share certain structural characteristics that are critical for their role in peptide display and antigen recognition by T lymphocytes.
Class I molecules consist of two noncovalently linked polypeptide chains, an MHC-encoded 44- to 47-kD α chain (or heavy chain) and a non–MHC-encoded 12-kD subunit called β2-microglobulin (Fig. 6-10). Each α chain is oriented so that about three quarters of the complete polypeptide extends into the extracellular milieu, a short hydrophobic segment spans the cell membrane, and the carboxyl-terminal residues are located in the cytoplasm. The amino-terminal (N-terminal) α1 and α2 segments of the α chain, each approximately 90 residues long, interact to form a platform of an eight-stranded, antiparallel β-pleated sheet supporting two parallel strands of α helix. This forms the peptide-binding cleft of class I molecules. Its size is large enough (~25 Å × 10 Å × 11 Å) to bind peptides of 8 to 11 amino acids in a flexible, extended conformation. The ends of the class I peptide-binding cleft are closed so that larger peptides cannot be accommodated. Therefore, native globular proteins have to be “processed” to generate fragments that are small enough to bind to MHC molecules and to be recognized by T cells (described later). The polymorphic residues of class I molecules are confined to the α1 and α2 domains, where they contribute to variations among different class I alleles in peptide binding and T cell recognition (Fig. 6-11). The α3 segment of the α chain folds into an Ig domain whose amino acid sequence is conserved among all class I molecules. This segment contains the binding site for CD8. At the carboxyl-terminal end of the α3 segment is a stretch of approximately 25 hydrophobic amino acids that traverses the lipid bilayer of the plasma membrane. Immediately following this are approximately 30 residues located in the cytoplasm, which include a cluster of basic amino acids that interact with phospholipid head groups of the inner leaflet of the lipid bilayer and anchor the MHC molecule in the plasma membrane.
FIGURE 6–10 Structure of a class I MHC molecule.
The schematic diagram (left) illustrates the different regions of the MHC molecule (not drawn to scale). Class I molecules are composed of a polymorphic α chain noncovalently attached to the nonpolymorphic β2-microglobulin (β2m). The α chain is glycosylated; carbohydrate residues are not shown. The ribbon diagram (right) shows the structure of the extracellular portion of the HLA-B27 molecule with a bound peptide, resolved by x-ray crystallography.
(Courtesy of Dr. P. Bjorkman, California Institute of Technology, Pasadena.)
FIGURE 6–11 Polymorphic residues of MHC molecules.
The polymorphic residues of class I and class II MHC molecules are located in the peptide-binding clefts and the α helices around the clefts. The regions of greatest variability among different HLA alleles are indicated in red, of intermediate variability in green, and of the lowest variability in blue.
(Reproduced with permission from Margulies DH, K Natarajan, J Rossjohn, and J McCluskey. Major histocompatibility complex [MHC] molecules: structure, function, and genetics. In WE Paul [ed]: Fundamental Immunology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, 2008.)
β2-Microglobulin, the light chain of class I molecules, is encoded by a gene outside the MHC and is named for its electrophoretic mobility (β2), size (micro), and solubility (globulin). β2-Microglobulin interacts noncovalently with the α3 domain of the α chain. Like the α3 segment, β2-microglobulin is structurally homologous to an Ig domain and is invariant among all class I molecules.
The fully assembled class I molecule is a heterotrimer consisting of an α chain, β2-microglobulin, and a bound antigenic peptide, and stable expression of class I molecules on cell surfaces requires the presence of all three components of the heterotrimer. The reason for this is that the interaction of the α chain with β2-microglobulin is stabilized by binding of peptide antigens to the cleft formed by the α1 and α2 segments, and conversely, the binding of peptide is strengthened by the interaction of β2-microglobulin with the α chain. Because antigenic peptides are needed to stabilize the MHC molecules, only potentially useful peptide-loaded MHC molecules are expressed on cell surfaces.
Most individuals are heterozygous for MHC genes and therefore express six different class I molecules on every cell, containing α chains encoded by the two inherited alleles of HLA-A, HLA-B, and HLA-C genes.
Class II MHC molecules are composed of two noncovalently associated polypeptide chains, a 32- to 34-kD α chain and a 29- to 32-kD β chain (Fig. 6-12). Unlike class I molecules, the genes encoding both chains of class II molecules are polymorphic and present in the MHC locus.
FIGURE 6–12 Structure of a class II MHC molecule.
The schematic diagram (left) illustrates the different regions of the MHC molecule (not drawn to scale). Class II molecules are composed of a polymorphic α chain noncovalently attached to a polymorphic β chain. Both chains are glycosylated; carbohydrate residues are not shown. The ribbon diagram (right) shows the structure of the extracellular portion of the HLA-DR1 molecule with a bound peptide, resolved by x-ray crystallography.
(Courtesy of Dr. P. Bjorkman, California Institute of Technology, Pasadena.)
The amino-terminal α1 and β1 segments of the class II chains interact to form the peptide-binding cleft, which is structurally similar to the cleft of class I molecules. Four strands of the floor of the cleft and one of the α-helical walls are formed by the α1 segment, and the other four strands of the floor and the second wall are formed by the β1 segment. The polymorphic residues are located in the α1 and β1 segments, in and around the peptide-binding cleft, as in class I molecules (see Fig. 6-11). In human class II molecules, most of the polymorphism is in the β chain. In class II molecules, the ends of the peptide-binding cleft are open, so that peptides of 30 residues or more can fit.
The α2 and β2 segments of class II molecules, like class I α3 and β2-microglobulin, are folded into Ig domains and are nonpolymorphic, that is, they do not vary among alleles of a particular class II gene. The β2 segment of class II molecules contains the binding site for CD4, similar to the binding site for CD8 in the α3 segment of the class I heavy chain. In general, α chains of one class II MHC locus (e.g., DR) most often pair with β chains of the same locus and less commonly with β chains of other loci (e.g., DQ, DP). The carboxyl-terminal ends of the α2 and β2 segments continue into short connecting regions followed by approximately 25–amino acid stretches of hydrophobic transmembrane residues. In both chains, the transmembrane regions end with clusters of basic amino acid residues, followed by short, hydrophilic cytoplasmic tails.
The fully assembled class II molecule is a heterotrimer consisting of an α chain, a β chain, and a bound antigenic peptide, and stable expression of class II molecules on cell surfaces requires the presence of all three components of the heterotrimer. As in class I molecules, this ensures that the MHC molecules that end up on the cell surface are the molecules that are serving their normal function of peptide display.
Humans inherit, from each parent, one DPA1 and one DPB1 gene encoding, respectively, the α and β chains of an HLA-DP molecule; one DQA1 and one DQB1 gene; and one DRA1 gene, a DRB1 gene, and a separate duplicated DRB gene that may encode the alleles DRB3, 4, or 5. Thus, each heterozygous individual inherits six or eight class II MHC alleles, three or four from each parent (one set each of DP and DQ, and one or two of DR). Typically, there is not much recombination between genes of different loci (i.e., DRα with DQβ, and so on), and each haplotype tends to be inherited as a single unit. However, because some haplotypes contain extra DRB loci that produce β chains that assemble with DRα, and some DQα molecules encoded on one chromosome can associate with DQβ molecules produced from the other chromosome, the total number of expressed class II molecules may be considerably more than six.
Following the realization that the immunogenicity of proteins depends on the ability of their peptides to be displayed by MHC molecules, considerable effort has been devoted to elucidating the molecular basis of peptide-MHC interactions and the characteristics of peptides that allow them to bind to MHC molecules. These studies have relied on functional assays of helper T cells and CTLs responding to APCs that were incubated with different peptides and direct binding studies of purified MHC molecules with radioactively or fluorescently labeled peptides in solution by methods such as equilibrium dialysis and gel filtration. X-ray crystallographic analysis of peptide-MHC complexes has provided definitive information about how peptides sit in the clefts of MHC molecules and about the residues of each that participate in this binding. In the section that follows, we summarize the key features of the interactions between peptides and class I or class II MHC molecules.
MHC molecules show a broad specificity for peptide binding, in contrast to the fine specificity of antigen recognition of the antigen receptors of lymphocytes. There are several important features of the interactions of MHC molecules and antigenic peptides.
The binding of peptides to MHC molecules is a noncovalent interaction mediated by residues both in the peptides and in the clefts of the MHC molecules. As we shall see later, protein antigens are proteolytically cleaved in APCs to generate the peptides that will be bound and displayed by MHC molecules. These peptides bind to the clefts of MHC molecules in an extended conformation. Once bound, the peptides and their associated water molecules fill the clefts, making extensive contacts with the amino acid residues that form the β strands of the floor and the α helices of the walls of the cleft (Fig. 6-13). In the case of class I MHC molecules, association of a peptide with the MHC groove depends on the binding of the positively charged N terminus and the negatively charged C terminus of the peptide to the MHC molecule by electrostatic interactions. In most MHC molecules, the β strands in the floor of the cleft contain “pockets.” Many class I molecules have a hydrophobic pocket that recognizes one of the following hydrophobic amino acids—valine, isoleucine, leucine, or methionine—at the C-terminal end of the peptide. Some class I molecules have a predilection for a basic residue (lysine or arginine) at the C terminus. In addition, other amino acid residues of a peptide may contain side chains that fit into specific pockets and bind to complementary amino acids in the MHC molecule through electrostatic interactions (charge-based salt bridges), hydrogen bonding, or van der Waals interactions. Such residues of the peptide are called anchor residues because they contribute most of the favorable interactions of the binding (i.e., they anchor the peptide in the cleft of the MHC molecule). Each MHC-binding peptide usually contains only one or two anchor residues, and this presumably allows greater variability in the other residues of the peptide, which are the residues that are recognized by specific T cells. In the case of some peptides binding to MHC molecules, especially class II molecules, specific interactions of peptides with the α-helical sides of the MHC cleft also contribute to peptide binding by forming hydrogen bonds or charge interactions. Class II MHC molecules accommodate larger peptides than class I MHC molecules. These longer peptides extend at either end beyond the floor of the groove.
FIGURE 6–13 Peptide binding to MHC molecules.
A, These top views of the crystal structures of MHC molecules show how peptides lie in the peptide-binding clefts. The class I molecule shown is HLA-A2, and the class II molecule is HLA-DR1. The cleft of the class I molecule is closed, whereas that of the class II molecule is open. As a result, class II molecules accommodate longer peptides than do class I molecules.
(Reprinted with permission of Macmillan Publishers Ltd. from Bjorkman PJ, MA Saper, B Samraoui, WS Bennett, JL Strominger, and DC Wiley. Structure of the human class I histocompatibility antigen HLA-A2. Nature 329:506-512, 1987; and Brown J, TS Jardetzky, JC Gorga, LJ Stern, RG Urban, JL Strominger, and DC Wiley. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33-39, 1993.)
B, The side view of a cutout of a peptide bound to a class II MHC molecule shows how anchor residues of the peptide hold it in the pockets in the cleft of the MHC molecule.
(From Scott CA, PA Peterson, L Teyton, and IA Wilson. Crystal structures of two I-Ad–peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity 8:319-329, 1998. Copyright 1998, with permission from Elsevier Science.)
Because many of the residues in and around the peptide-binding cleft of MHC molecules are polymorphic (i.e., they differ among various MHC alleles), different alleles favor the binding of different peptides. This is the structural basis for the function of MHC genes as “immune response genes”; only animals that express MHC alleles that can bind a particular peptide and display it to T cells can respond to that peptide.
The antigen receptors of T cells recognize both the antigenic peptide and the MHC molecules, with the peptide being responsible for the fine specificity of antigen recognition and the MHC residues accounting for the MHC restriction of the T cells. A portion of the bound peptide is exposed from the open top of the cleft of the MHC molecule, and the amino acid side chains of this portion of the peptide are recognized by the antigen receptors of specific T cells. The same T cell receptor also interacts with polymorphic residues of the α helices of the MHC molecule itself (see Fig. 6-1). Predictably, variations in either the peptide antigen or the peptide-binding cleft of the MHC molecule will alter presentation of that peptide or its recognition by T cells. In fact, one can enhance the immunogenicity of a peptide by incorporating into it a residue that strengthens its binding to commonly inherited MHC molecules in a population.
Because MHC molecules can bind only peptides but most antigens are large proteins, there must be ways by which these proteins are converted into peptides. The conversion is called antigen processing and is the focus of the remainder of the chapter.
The pathways of antigen processing convert protein antigens present in the cytosol or internalized from the extracellular environment into peptides and load these peptides onto MHC molecules for display to T lymphocytes (Fig. 6-14). The mechanisms of antigen processing are designed to generate peptides that have the structural characteristics required for associating with MHC molecules and to place these peptides in the same cellular location as the appropriate MHC molecules with available peptide-binding clefts. Peptide binding to MHC molecules occurs before cell surface expression and is an integral component of the biosynthesis and assembly of MHC molecules. In fact, as mentioned earlier, peptide association is required for the stable assembly and surface expression of class I and class II MHC molecules.
FIGURE 6–14 Pathways of antigen processing and presentation.
In the class I MHC pathway (top panel), protein antigens in the cytosol are processed by proteasomes, and peptides are transported into the endoplasmic reticulum (ER), where they bind to class I MHC molecules. In the class II MHC pathway (bottom panel), extracellular protein antigens are endocytosed into vesicles, where the antigens are processed and the peptides bind to class II MHC molecules. Details of these processing pathways are in Figures 6-16 and 6-17.
Protein antigens that are present in the cytosol (usually synthesized in the cell) generate class I–associated peptides that are recognized by CD8+ T cells, whereas antigens internalized from the extracellular environment into the vesicles of APCs generate peptides that are displayed by class II MHC molecules and recognized by CD4+ T cells. The different fates of cytosolic and vesicular antigens are due to the segregated pathways of biosynthesis and assembly of class I and class II MHC molecules (see Fig. 6-14 and Table 6-5). This fundamental difference between cytosolic and vesicular antigens has been demonstrated experimentally by analyzing the presentation of the same antigen introduced into APCs in different ways (Fig. 6-15). If a protein antigen is produced in the cytoplasm of APCs as the product of a transfected gene (modified so its protein product cannot enter the secretory pathway) or introduced directly into the cytoplasm of the APCs by osmotic shock, it is presented in the form of class I–associated peptides that are recognized by CD8+ T cells. In contrast, if the same protein is added in soluble form to APCs and endocytosed into the vesicles of the APCs, it is subsequently presented as class II–associated peptides and is recognized by antigen-specific CD4+ T cells.
TABLE 6–5 Comparative Features of Class I and Class II MHC Pathways of Antigen Processing and Presentation
Feature | Class I MHC Pathway | Class II MHC Pathway |
---|---|---|
Composition of stable peptide-MHC complex | Polymorphic α chain, β2-microglobulin, peptide ![]() |
Polymorphic α and β chains, peptide ![]() |
Types of APCs | All nucleated cells | Dendritic cells, mononuclear phagocytes, B lymphocytes; endothelial cells, thymic epithelium |
Responsive T cells | CD8+ T cells | CD4+ T cells |
Source of protein antigens | Cytosolic proteins (mostly synthesized in the cell; may enter cytosol from phagosomes) | Endosomal and lysosomal proteins (mostly internalized from extracellular environment) |
Enzymes responsible for peptide loading of MHC | Cytosolic proteasome | Endosomal and lysosomal proteases (e.g., cathepsins) |
Site of peptide loading of MHC | Endoplasmic reticulum | Specialized vesicular compartment |
Molecules involved in transport of peptides and loading of MHC molecules | Chaperones, TAP in ER | Chaperones in ER; invariant chain in ER, Golgi and MIIC/CIIV; DM |
APC, antigen-presenting cell; CIIV, class II vesicle; ER, endoplasmic reticulum; MHC, major histocompatibility complex; MIIC, MHC class II compartment; TAP, transporter associated with antigen processing.
FIGURE 6–15 Experimental demonstration of presentation of cytosolic and extracellular antigens.
When a model protein antigen, ovalbumin, is synthesized intracellularly as a result of transfection of its gene modified to lack the N-terminal signal sequences (A) or when it is introduced into the cytoplasm through membranes made leaky by osmotic shock (B), ovalbumin-derived peptides are presented in association with class I MHC molecules. When ovalbumin is added as an extracellular antigen to an APC that expresses both class I and class II MHC molecules, ovalbumin-derived peptides are presented only in association with class II molecules (C). The measured response of class I–restricted CTLs is killing of the APCs, and the measured response of class II–restricted helper T cells is cytokine secretion.
We first describe these two pathways of antigen processing and then their functional significance.
Class I MHC–associated peptides are produced by the proteolytic degradation of cytosolic proteins, the transport of the generated peptides into the endoplasmic reticulum (ER), and their binding to newly synthesized class I molecules. This sequence of events is illustrated in Figure 6-16, and the individual steps are described next.
FIGURE 6–16 The class I MHC pathway of antigen presentation.
The stages in the processing of cytosolic proteins are described in the text. ERAP, endoplasmic reticulum associated peptidase; ER, endoplasmic reticulum; β2m, β2-microglobulin; TAP, transporter associated with antigen processing; Ub, ubiquitin.
Most cytosolic protein antigens are synthesized within cells, and some are phagocytosed and transported into the cytosol. Foreign antigens in the cytosol may be the products of viruses or other intracellular microbes that infect such cells. In tumor cells, various mutated or overexpressed genes may produce protein antigens that are recognized by class I–restricted CTLs (see Chapter 17). Peptides that are presented in association with class I molecules may also be derived from microbes and other particulate antigens that are internalized into phagosomes but escape into the cytosol. Some microbes are able to damage phagosome membranes and create pores through which the microbes and their antigens enter the cytosol. For instance, pathogenic strains of Listeria monocytogenes produce a protein, called listeriolysin, that enables bacteria to escape from vesicles into the cytosol. (This escape is a mechanism that the bacteria may have evolved to resist killing by the microbicidal mechanisms of phagocytes, most of which are concentrated in phagolysosomes.) Once the antigens of the phagocytosed microbes are in the cytosol, they are processed like other cytosolic antigens. In dendritic cells, some antigens that are ingested into vesicles enter the cytosolic class I pathway, in the process called cross-presentation that is described later. Other important sources of peptides in the cytosol are misfolded proteins in the ER that are translocated into the cytosol and degraded like other cytosolic proteins; this process is called ER-associated degradation.
The major mechanism for the generation of peptides from cytosolic protein antigens is proteolysis by the proteasome. Proteasomes are large multiprotein enzyme complexes with a broad range of proteolytic activity that are found in the cytoplasm and nuclei of most cells. The proteasome appears as a cylinder composed of a stacked array of two inner β rings and two outer α rings, each ring being composed of seven subunits, with a cap-like structure at either end of the cylinder. The proteins in the outer α rings are structural and lack proteolytic activity; in the inner β rings, three of the seven subunits (β1, β2, and β5) are the catalytic sites for proteolysis.
The proteasome performs a basic housekeeping function in cells by degrading many damaged or improperly folded proteins. Protein synthesis normally occurs at a rapid rate, about six to eight amino acid residues being incorporated into elongating chains every second. The process is error prone, and it is estimated that approximately 20% of newly synthesized proteins are misfolded. These defective ribosomal products as well as older effete proteins are targeted for proteasomal degradation by covalent linkage of several copies of a small polypeptide called ubiquitin. Ubiquitinated proteins, with chains of four or more ubiquitins, are recognized by the proteasomal cap and are then unfolded, the ubiquitin is removed, and the proteins are “threaded” through proteasomes, where they are degraded into peptides. The proteasome has broad substrate specificity and can generate a wide variety of peptides from cytosolic proteins (but usually does not degrade proteins completely into single amino acids). Interestingly, in cells treated with the cytokine IFN-γ, there is increased transcription and synthesis of three novel catalytic subunits of the proteasome known as β1i, β2i, and β5i, which replace the three catalytic subunits of the β ring of the proteasome. This results in a change in the substrate specificity of the proteasome so that the peptides produced usually contain carboxyl-terminal hydrophobic amino acids such as leucine, valine, isoleucine, and methionine or basic residues such as lysine or arginine. These kinds of C termini are typical of peptides that are transported into the class I pathway and bind to class I molecules. This is one mechanism by which IFN-γ enhances antigen presentation, another mechanism being increased expression of MHC molecules (see Fig. 6-9). Thus, proteasomes are excellent examples of organelles whose basic cellular function has been adapted for a specialized role in antigen presentation.
Some protein antigens apparently do not require ubiquitination or proteasomes to be presented by the class I MHC pathway and are presumably degraded by cytosolic proteases. In addition, the signal sequences of membrane and secreted proteins are usually cleaved by signal peptidase and degraded proteolytically soon after synthesis and translocation into the ER. This ER processing generates class I–binding peptides without a need for proteolysis in the cytosol.
Peptides generated in the cytosol are translocated by a specialized transporter into the ER, where newly synthesized class I MHC molecules are available to bind the peptides. Because antigenic peptides for the class I pathway are generated in the cytosol but class I MHC molecules are synthesized in the ER, a mechanism is needed to deliver cytosolic peptides into the ER. This transport is mediated by a dimeric protein called transporter associated with antigen processing (TAP), which is homologous to the ABC transporter family of proteins that mediate ATP-dependent transport of low-molecular-weight compounds across cellular membranes. The TAP protein is located in the ER membrane, where it mediates the active, ATP-dependent transport of peptides from the cytosol into the ER lumen. Although the TAP heterodimer has a broad range of specificities, it optimally transports peptides ranging from 8 to 16 amino acids in length and containing carboxyl termini that are basic (in humans) or hydrophobic (in humans and mice). As mentioned before, these are the characteristics of the peptides that are generated in the proteasome and are able to bind to class I MHC molecules.
On the luminal side of the ER membrane, the TAP protein associates with a protein called tapasin, which also has an affinity for newly synthesized empty class I MHC molecules. Tapasin thus brings the TAP transporter into a complex with the class I MHC molecules that are awaiting the arrival of peptides.
Peptides translocated into the ER bind to class I MHC molecules that are associated with the TAP dimer through tapasin. The synthesis and assembly of class I molecules involve a multistep process in which peptide binding plays a key role. Class I α chains and β2-microglobulin are synthesized in the ER. Appropriate folding of the nascent α chains is assisted by chaperone proteins, such as the membrane chaperone calnexin and the luminal chaperone calreticulin. Within the ER, the newly formed empty class I dimers remain linked to the TAP complex. Empty class I MHC molecules, tapasin, and TAP are part of a larger peptide-loading complex in the ER that also includes calnexin, calreticulin, and the oxidoreductase Erp57, all of which contribute to class I assembly and loading. Peptides that enter the ER through TAP and peptides produced in the ER, such as signal peptides, are often trimmed to the appropriate size for MHC binding by the ER-resident aminopeptidase ERAP. The peptide is then able to bind to the cleft of the adjacent class I molecule. Once class I MHC molecules are loaded with peptide, they no longer have an affinity for tapasin, so the peptide–class I complex is released from tapasin, and it is able to exit the ER and be transported to the cell surface. In the absence of bound peptide, many of the newly formed α chain–β2-microglobulin dimers are unstable and cannot be transported efficiently from the ER to the Golgi. These misfolded empty class I MHC complexes are transported into the cytosol and are degraded in proteasomes.
Peptides transported into the ER preferentially bind to class I but not class II MHC molecules, for two reasons. First, newly synthesized class I molecules are attached to the luminal aspect of the TAP complex, and they capture peptides rapidly as the peptides are transported into the ER by the TAP. Second, as discussed later, in the ER, the peptide-binding clefts of newly synthesized class II molecules are blocked by the associated Ii.
Class I MHC molecules with bound peptides are structurally stable and are expressed on the cell surface. Stable peptide–class I MHC complexes that were produced in the ER move through the Golgi complex and are transported to the cell surface by exocytic vesicles. Once expressed on the cell surface, the peptide–class I complexes may be recognized by peptide antigen–specific CD8+ T cells, with the CD8 coreceptor playing an essential role by binding to nonpolymorphic regions of the class I molecule. In later chapters, we will return to a discussion of the role of class I–restricted CTLs in protective immunity. Several viruses have evolved mechanisms that interfere with class I assembly and peptide loading, emphasizing the importance of this pathway for antiviral immunity (see Chapter 15).
The generation of class II MHC–associated peptides from endocytosed antigens involves the proteolytic degradation of internalized proteins in endocytic vesicles and the binding of peptides to class II MHC molecules in these vesicles. This sequence of events is illustrated in Figure 6-17, and the individual steps are described next.
FIGURE 6–17 The class II MHC pathway of antigen presentation.
The stages in the processing of extracellular antigens are described in the text. CLIP, class II–associated invariant chain peptide; ER, endoplasmic reticulum; Ii, invariant chain.
Most class II–associated peptides are derived from protein antigens that are captured from the extracellular environment and internalized into endosomes by specialized APCs. The initial steps in the presentation of an extracellular protein antigen are the binding of the native antigen to an APC and the internalization of the antigen. Different APCs can bind protein antigens in several ways and with varying efficiencies and specificities. Dendritic cells and macrophages express a variety of surface receptors that recognize structures shared by many microbes (see Chapter 4). These APCs use the receptors to bind and internalize microbes efficiently. Macrophages also express receptors for the Fc portions of antibodies and receptors for the complement protein C3b, which bind antigens with attached antibodies or complement proteins and enhance their internalization. Another example of specific receptors on APCs is the surface immunoglobulin on B cells, which, because of its high affinity for antigens, can effectively mediate the internalization of proteins present at very low concentrations in the extracellular fluid (see Chapter 11).
After their internalization, protein antigens become localized in intracellular membrane-bound vesicles called endosomes. The endosomal pathway of intracellular protein traffic communicates with lysosomes, which are more dense membrane-bound enzyme-containing vesicles. A subset of class II MHC–rich late endosomes plays a special role in antigen processing and presentation by the class II pathway; this is described later. Particulate microbes are internalized into vesicles called phagosomes, which may fuse with lysosomes, producing vesicles called phagolysosomes or secondary lysosomes. Some microbes, such as mycobacteria and Leishmania, may survive and even replicate within phagosomes or endosomes, providing a persistent source of antigens in vesicular compartments.
Proteins other than those ingested from the extracellular milieu can also enter the class II MHC pathway. Some protein molecules destined for secretion may end up in the same vesicles as class II MHC molecules and may be processed instead of being secreted. Less often, cytoplasmic and membrane proteins may be processed and displayed by class II molecules. In some cases, this may result from the enzymatic digestion of cytoplasmic contents, referred to as autophagy. In this pathway, cytoplasmic proteins are trapped within membrane-bound vesicles called autophagosomes; these vesicles fuse with lysosomes, and the cytoplasmic proteins are proteolytically degraded. The peptides generated by this route may be delivered to the same class II–bearing vesicular compartment as are peptides derived from ingested antigens. Autophagy is primarily a mechanism for degrading cellular proteins and recycling their products as sources of nutrients during times of stress. It also participates in the destruction of intracellular microbes, which are enclosed in vesicles and delivered to lysosomes. It is therefore predictable that peptides generated by autophagy will be displayed for T cell recognition. Some peptides that associate with class II molecules are derived from membrane proteins, which may be recycled into the same endocytic pathway as are extracellular proteins. Thus, even viruses, which replicate in the cytoplasm of infected cells, may produce proteins that are degraded into peptides that enter the class II MHC pathway of antigen presentation. This may be a mechanism for the activation of viral antigen–specific CD4+ helper T cells.
Internalized proteins are degraded enzymatically in late endosomes and lysosomes to generate peptides that are able to bind to the peptide-binding clefts of class II MHC molecules. The degradation of protein antigens in vesicles is an active process mediated by proteases that have acidic pH optima. The most abundant proteases of late endosomes are cathepsins, which are thiol and aspartyl proteases with broad substrate specificities. Several cathepsins contribute to the generation of peptides for the class II pathway. Partially degraded or cleaved proteins bind to the open-ended clefts of class II MHC molecules and are then trimmed enzymatically to their final size. Immunoelectron microscopy and subcellular fractionation studies have defined a class II–rich subset of late endosomes that plays an important role in antigen presentation (Fig. 6-18). In macrophages and human B cells, it is called the MHC class II compartment, or MIIC. (In some mouse B cells, a similar organelle containing class II molecules has been identified and named the class II vesicle.) The MIIC has a characteristic multilamellar appearance by electron microscopy. Importantly, it contains all the components required for peptide–class II association, including the enzymes that degrade protein antigens, the class II molecules, and two molecules involved in peptide loading of class II molecules, the invariant chain and HLA-DM, whose functions are described later.
FIGURE 6–18 Morphology of class II MHC–rich endosomal vesicles.
A, Immunoelectron micrograph of a B lymphocyte that has internalized bovine serum albumin into early endosomes (labeled with 5-nm gold particles, arrow) and contains class II MHC molecules (labeled with 10-nm gold particles, arrowheads) in MIICs. The internalized albumin will reach the MIICs ultimately.
(From Kleijmeer MJ, S Morkowski, JM Griffith, AY Rudensky, and HJ Geuze. Major histocompatibility complex class II compartments in human and mouse B lymphoblasts represent conventional endocytic compartments. Reproduced from The Journal of Cell Biology 139:639-649, 1997, by copyright permission of The Rockefeller University Press.)
B, Immunoelectron micrograph of a B cell showing location of class II MHC molecules and DM in MIICs (stars) and invariant chain concentrated in the Golgi (G) complex. In this example, there is virtually no invariant chain detected in the MIIC, presumably because it has been cleaved to generate CLIP.
(Courtesy of Drs. H. J. Geuze and M. Kleijmeer, Department of Cell Biology, Utrecht University, The Netherlands.)
Class II MHC molecules are synthesized in the ER and transported to endosomes with an associated protein, the invariant chain (Ii), which occupies the peptide-binding clefts of the newly synthesized class II molecules (Fig. 6-19). The α and β chains of class II MHC molecules are coordinately synthesized and associate with each other in the ER. Nascent class II dimers are structurally unstable, and their folding and assembly are aided by ER-resident chaperones, such as calnexin. A protein called the invariant chain (Ii) promotes folding and assembly of class II molecules and directs newly formed class II molecules to the late endosomes and lysosomes where internalized proteins have been proteolytically degraded into peptides. The Ii is a trimer composed of three 30-kD subunits, three of which bind one newly synthesized class II αβ heterodimer in a way that blocks the peptide-binding cleft and prevents it from accepting peptides. As a result, class II MHC molecules cannot bind and present peptides they encounter in the ER, leaving such peptides to associate with class I molecules (described before). The class II MHC molecules are transported in exocytic vesicles toward the cell surface. During this passage, the vesicles taking class II molecules out of the ER meet and fuse with the endocytic vesicles containing internalized and processed antigens. Thus, class II molecules encounter antigenic peptides that have been generated by proteolysis of endocytosed proteins, and the peptide-MHC association occurs in the vesicles.
FIGURE 6–19 The functions of class II MHC–associated invariant chain and HLA-DM.
Class II molecules with bound invariant chain, or CLIP, are transported into vesicles, where the Ii is degraded and the remaining CLIP is removed by the action of DM. Antigenic peptides generated in the vesicles are then able to bind to the class II molecules. Another class II–like protein, called HLA-DO, may regulate the DM-catalyzed removal of CLIP. CIIV, class II vesicle.
Within the endosomal vesicles, the Ii dissociates from class II MHC molecules by the combined action of proteolytic enzymes and the HLA-DM molecule, and antigenic peptides are then able to bind to the available peptide-binding clefts of the class II molecules (see Fig. 6-19). Because the Ii blocks access to the peptide-binding cleft of a class II MHC molecule, it must be removed before complexes of peptide and class II molecules can form. The same proteolytic enzymes, such as cathepsins, that generate peptides from internalized proteins also act on the Ii, degrading it and leaving only a 24–amino acid remnant called class II–associated invariant chain peptide (CLIP), which sits in the peptide-binding cleft in the same way that other peptides bind to class II MHC molecules. Next, CLIP has to be removed so that the cleft becomes accessible to antigenic peptides produced from extracellular proteins. This removal is accomplished by the action of a molecule called HLA-DM (or H-2M in the mouse), which is encoded within the MHC, has a structure similar to that of class II MHC molecules, and colocalizes with class II molecules in the MIIC endosomal compartment. HLA-DM molecules differ from class II MHC molecules in several respects; they are not polymorphic, and they are not expressed on the cell surface. HLA-DM acts as a peptide exchanger, facilitating the removal of CLIP and the addition of other peptides to class II MHC molecules.
Once CLIP is removed, peptides generated by proteolysis of internalized protein antigens are able to bind to class II MHC molecules. The HLA-DM molecule may accelerate the rate of peptide binding to class II molecules. Because the ends of the class II MHC peptide-binding cleft are open, large peptides may bind and are then “trimmed” by proteolytic enzymes to the appropriate size for T cell recognition. As a result, the peptides that are actually presented attached to cell surface class II MHC molecules are usually 10 to 30 amino acids long and typically have been generated by this trimming step.
Class II MHC molecules are stabilized by the bound peptides, and the stable peptide–class II complexes are delivered to the surface of the APC, where they are displayed for recognition by CD4+ T cells. The transport of class II MHC–peptide complexes to the cell surface is believed to occur by fusion of vesiculotubular extensions from the lysosome with the plasma membrane, resulting in delivery of the loaded class II MHC complexes to the cell surface. Once expressed on the APC surface, the peptide–class II complexes are recognized by peptide antigen–specific CD4+ T cells, with the CD4 coreceptor playing an essential role by binding to nonpolymorphic regions of the class II molecule. Interestingly, whereas peptide-loaded class II molecules traffic from the late endosomes and lysosomes to the cell surface, other molecules involved in antigen presentation, such as DM, stay in the vesicles and are not expressed in the plasma membrane. The mechanism of this selective traffic is unknown.
Some dendritic cells have the ability to capture and to ingest virus-infected cells or tumor cells and present the viral or tumor antigens to naive CD8+ T lymphocytes (Fig. 6-20). In this pathway, the ingested antigens are transported from vesicles to the cytosol, from where peptides enter the class I pathway. As we discussed before, most ingested proteins do not enter the cytosolic class I pathway of antigen presentation. This permissiveness for protein traffic from endosomal vesicles to the cytosol is unique to dendritic cells. (At the same time, the dendritic cells can present class II MHC–associated peptides generated in the vesicles to CD4+ helper T cells, which are often required to induce full responses of CD8+ cells [see Chapter 9].) This process is called cross-presentation, or cross-priming, to indicate that one cell type (the dendritic cell) can present antigens from another cell (the virus-infected or tumor cell) and prime, or activate, T cells specific for these antigens. The process of cross-presentation seems to violate the rule that vesicular antigens are presented bound to class II MHC molecules and cytosolic antigens with class I. However, it is a normal function of dendritic cells, because of which dendritic cells can activate naive CD8+ T cells even if the antigens are produced in cells incapable of presenting the antigen, as long as the antigen-containing cells can be internalized by dendritic cells into vesicles.
FIGURE 6–20 Cross-presentation of antigens to CD8+ T cells.
Cells infected with intracellular microbes, such as viruses, are ingested by dendritic cells, and the antigens of the infectious microbes are processed and presented in association with class I MHC molecules to CD8+ T cells. Thus, dendritic cells are able to present endocytosed vesicular antigens by the class I pathway. Note that the same cross-presenting APCs may display class II MHC–associated antigens from the microbe for recognition by CD4+ helper T cells.
Cross-presentation involves the fusion of phagosomes containing the ingested antigens with the ER. Ingested proteins are then translocated from the ER to the cytosol by poorly defined pathways that are reminiscent of ER-associated degradation. The proteins that were initially internalized in the phagosome are therefore delivered to the compartment (the cytosol) where proteolysis for the class I pathway normally occurs. These phagocytosed proteins thus undergo proteasomal degradation, and peptides derived from them are transported by TAP back into the ER, where they are assembled with newly synthesized class I MHC molecules as described for the conventional class I pathway.
So far, we have discussed the specificity of CD4+ and CD8+ T lymphocytes for MHC-associated foreign protein antigens and the mechanisms by which complexes of peptides and MHC molecules are produced. In this section, we consider how the central role of the MHC in antigen presentation influences the nature of T cell responses to different antigens and the types of antigens that T cells recognize.
The presentation of cytosolic versus vesicular proteins by the class I or class II MHC pathways, respectively, determines which subsets of T cells will respond to antigens found in these two pools of proteins and is intimately linked to the functions of these T cells (Fig. 6-21). Endogenously synthesized antigens, such as viral and tumor proteins, are located in the cytoplasm and are recognized by class I–restricted CD8+ CTLs, which kill the cells producing the intracellular antigens. Conversely, extracellular antigens usually end up in endosomal vesicles and activate class II–restricted CD4+ T cells because vesicular proteins are processed into class II–binding peptides. CD4+ T cells function as helpers to stimulate B cells to produce antibodies and macrophages to enhance their phagocytic activity, both mechanisms that serve to eliminate extracellular antigens. Thus, antigens from microbes that reside in different cellular locations selectively stimulate the T cell responses that are most effective at eliminating that type of microbe. This is especially important because the antigen receptors of CTLs and helper T cells cannot distinguish between extracellular and intracellular microbes. By segregating peptides derived from these types of microbes, the MHC molecules guide CD4+ and CD8+ subsets of T cells to respond to the microbes that each subset can best combat.
FIGURE 6–21 Presentation of extracellular and cytosolic antigens to different subsets of T cells.
A, Cytosolic antigens are presented by nucleated cells to CD8+ CTLs, which kill (lyse) the antigen-expressing cells. B, Extracellular antigens are presented by macrophages or B lymphocytes to CD4+ helper T lymphocytes, which activate the macrophages or B cells and eliminate the extracellular antigens.
MHC molecules determine the immunogenicity of protein antigens in two related ways.
FIGURE 6–22 Immunodominance of peptides.
Protein antigens are processed to generate multiple peptides; immunodominant peptides are the ones that bind best to the available class I and class II MHC molecules. The illustration shows an extracellular antigen generating a class II–binding peptide, but this also applies to peptides of cytosolic antigens that are presented by class I MHC molecules.
Several small populations of T cells are able to recognize nonprotein antigens without the involvement of class I or class II MHC molecules. Thus, these populations are exceptions to the rule that T cells can see only MHC-associated peptides. The best defined of these populations are NKT cells and γδ T cells.
NKT cells express markers that are characteristic of both natural killer (NK) cells and T lymphocytes and express αβ T cell receptors with very limited diversity (see Chapter 10). NKT cells recognize lipids and glycolipids displayed by the class I–like “non-classical” MHC molecule called CD1. There are several CD1 proteins expressed in humans and mice. Although their intracellular traffic pathways differ in subtle ways, all the CD1 molecules bind and display lipids by a unique pathway. Newly synthesized CD1 molecules pick up cellular lipids and carry these to the cell surface. From here, the CD1-lipid complexes are endocytosed into endosomes or lysosomes, where lipids that have been ingested from the external environment are captured and the new CD1-lipid complexes are returned to the cell surface. Thus, CD1 molecules acquire endocytosed lipid antigens during recycling and present these antigens without apparent processing. The NKT cells that recognize the lipid antigens may play a role in defense against microbes, especially mycobacteria (which are rich in lipid components).
γδ T cells are a small population of T cells that express antigen receptor proteins that are similar but not identical to those of CD4+ and CD8+ T cells (see Chapter 10). γδ T cells recognize many different types of antigens, including some proteins and lipids, as well as small phosphorylated molecules and alkyl amines. These antigens are not displayed by MHC molecules, and γδ cells are not MHC restricted. It is not known if a particular cell type or antigen display system is required for presenting antigens to these cells.
The Role of Dendritic Cells in Antigen Capture and Presentation
Bousso P. T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nature Reviews Immunology. 2008;8:675-684.
Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nature Immunology. 2009;10:1237-1244.
Kurts C, Robinson BW, Knolle PA. Cross-priming in health and disease. Nature Reviews Immunology. 2010;10:403-414.
Lin ML, Zhan Y, Villadangos JA, Lew AM. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunology and Cell Biology. 2008;86:353-362.
López-Bravo M, Ardavín C. In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity. 2008;29:343-351.
Reis e Sousa C. Dendritic cells in a mature age. Nature Reviews Immunology. 2006;6:476-483.
Segura E, Villadangos JA. Antigen presentation by dendritic cells in vivo. Current Opinion in Immunology. 2009;21:105-110.
Structure of MHC Genes, MHC Molecules, and Peptide-MHC Complexes
Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen HLA-A2. Nature. 1987;329:506-512.
Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nature Reviews Genetics. 2004;5:889-899.
Klein J, Sato A. The HLA system. New England Journal of Medicine. 2000;343:702-709. 782-786
Madden DR. The three dimensional structure of peptide-MHC complexes. Annual Review of Immunology. 1995;13:587-622.
Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annual Review of Immunology. 2008;26:171-203.
Mazza C, Malissen B. What guides MHC-restricted TCR recognition? Seminars in Immunology. 2007;19:225-235.
Reith W, Leibundgut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator. Nature Reviews Immunology. 2005;5:793-806.
Protein Antigen Processing and MHC-Associated Presentation of Peptide Antigens
Bryant PW, Lennon-Dumenil AM, Fiebiger E, Lagaudriere-Gesbert C, Ploegh HL. Proteolysis and antigen presentation by MHC class II molecules. Advances in Immunology. 2002;80:71-114.
Chapman HA. Endosomal proteases in antigen presentation. Current Opinion in Immunology. 2006;18:78-84.
Purcell AW, Elliott T. Molecular machinations of the MHC-I peptide loading complex. Current Opinion in Immunology. 2008;20:75-81.
Ramachandra L, Simmons D, Harding CV. MHC molecules and microbial antigen processing in phagosomes. Current Opinion in Immunology. 2009;21:98-104.
Rocha N, Neefjes J. MHC class II molecules on the move for successful antigen presentation. EMBO Journal. 2008;27:1-5.
Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility class I presentation. Nature Immunology. 2004;5:670-677.
Stern LJ, Potolicchio I, Santambrogio L. MHC class II compartment subtypes: structure and function. Current Opinion in Immunology. 2006;18:64-69.
Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annual Review of Immunology. 2005;23:975-1028.
Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nature Reviews Immunology. 2008;8:607-618.
Yewdell JW, Bennink JR. Immunodominance in major histocompatibility class I–restricted T lymphocyte responses. Annual Review of Immunology. 1999;17:51-88.
Yewdell JW, Haeryfar SM. Understanding presentation of viral antigens to CD8+ T cells in vivo: the key to rational vaccine design. Annual Review of Immunology. 2005;23:651-682.
“Non-Classical” Antigen Presentation
Cohen NR, Garg S, Brenner MB. Antigen presentation by CD1: lipids, T cells, and NKT cells in microbial immunity. Advances in Immunology. 2009;102:1-94.
Salio M, Silk JD, Cerundolo V. Recent advances in processing and presentation of CD1 bound lipid antigens. Current Opinion in Immunology. 2010;22:81-88.